Abstract

We demonstrate low-threshold supercontinuum generated in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion. The tapered submicrometer chalcogenide fiber exhibits an ultrahigh nonlinearity, n21.1×1017m2W and an effective mode area of 0.48μm2, yielding an effective nonlinearity of γ93.4Wm, which is over 80,000 times larger than standard silica single-mode fiber at a wavelength of 1550nm. This high nonlinearity, in conjunction with the engineered anomalous dispersion, enables low-threshold soliton fission leading to large spectral broadening at a dramatically reduced peak power of several watts, corresponding to picojoule energy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, Opt. Express 12, 1045 (2004).
    [CrossRef] [PubMed]
  3. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
    [CrossRef]
  4. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, Opt. Lett. 32, 1644 (2007).
    [CrossRef] [PubMed]
  5. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  7. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, Heike Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, J. Lightwave Technol. 24, 183 (2006).
    [CrossRef]
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, Opt. Express 12, 5082 (2004).
    [CrossRef] [PubMed]
  9. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, Electron. Lett. 41, 795 (2005).
    [CrossRef]
  10. O. Boyraz, T. Indukuri, and B. Jalali, Opt. Express 12, 829 (2004).
    [CrossRef] [PubMed]
  11. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., Opt. Express 14, 5524 (2006).
    [CrossRef] [PubMed]
  12. V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, Opt. Express 15, 9205 (2007).
    [CrossRef] [PubMed]
  13. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004).
    [CrossRef]
  14. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, Opt. Express 15, 10324 (2007).
    [CrossRef] [PubMed]
  15. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, Opt. Express 15, 15776 (2007).
    [CrossRef] [PubMed]
  16. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 2.

2007 (4)

2006 (3)

2005 (1)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, Electron. Lett. 41, 795 (2005).
[CrossRef]

2004 (6)

2002 (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

2001 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 2.

2000 (2)

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 2.

Andersen, T.

Asimakis, S.

Austin, D. R.

Baker, N. J.

Birks, T.

Birks, T. A.

Bolger, J. A.

Bookey, H. T.

Boyraz, O.

Brambilla, G.

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, Electron. Lett. 41, 795 (2005).
[CrossRef]

Brown, T.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Cerullo, G.

Chen, X.

Chiodo, N.

Choi, D.-Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

de Sterke, C. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dulkeith, E.

Ebendorff-Heidepriem, H.

Ebendorff-Heidepriem, Heike

Eggleton, B. J.

Feder, K. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Feng, X.

Finazzi, V.

Finsterbusch, K.

Frampton, K.

Frampton, K. E.

Fu, L.

Fu, L. B.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Hansen, K.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Hilligsøe, K. M.

Hodelin, J.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Indukuri, T.

Jalali, B.

Jha, A.

Kar, A. K.

Keiding, S.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Koizumi, F.

Kristiansen, R.

Kuhlmey, B. T.

Lamont, M. R.

Lamont, M. R. E.

Larsen, J.

Lenz, G.

Leong, J. Y. Y.

Leon-Saval, S.

Li, Y.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Marshall, G. D.

Mason, M.

Mølmer, K.

Monro, T.

Monro, T. M.

Moore, R.

Moore, R. C.

Moss, D. J.

Nguyen, H. C.

Nicholson, J. W.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nielsen, C.

Osellame, R.

Osgood, R. M.

Panoiu, N. C.

Paulsen, H.

Petropoulos, P.

Price, J. H. V.

Psaila, N. D.

Ranka, J. K.

Richardson, D.

Richardson, D. J.

Russell, P. S. J.

Russell, P. St. J.

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, Opt. Express 12, 2864 (2004).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Sanghera, J.

Shaw, L. B.

Shen, S.

Slusher, R. E.

Stentz, A. J.

Ta'eed, V.

Thomson, R. R.

Vlasov, Y. A.

Wadsworth, W.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Windeler, R. S.

Withford, M. J.

Yeom, D. I.

Yeom, D.-I.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Electron. Lett. (1)

G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, Electron. Lett. 41, 795 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (8)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Calculated dispersion profile in As 2 Se 3 wire, (b) SEM scan of fabricated As 2 Se 3 taper waist.

Fig. 2
Fig. 2

Schematic for nonlinear experiment to investigate supercontinuum generation in As 2 Se 3 submicrometer tapers.

Fig. 3
Fig. 3

Measured transmission spectra of As 2 Se 3 taper for different incident peak power into taper waist.

Fig. 4
Fig. 4

(a) Comparison of experimental results with numerical modeling for different power levels (black curve: P 0 = 0.2 W ; red curve: 7.8 W ). (b) Evolution of pulse propagating along the As 2 Se 3 tapers at P 0 = 7.8 W . The dotted curve in the spectrogram indicates the boundary of the taper waist. The simulation also shows the effect of TPA in the spectrum.

Metrics