Abstract

We compare the angle-dependent transmission spectra of a metal hole array with dielectric pillars in each hole with that of a conventional metal hole array. The pillars enhance the optical transmission as well as the interaction between surface plasmon modes. This results in an observed splitting Δωω as large as 6%, at normal incidence, for the modes on the pillar side of the array.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
    [CrossRef]
  3. U. Fano, J. Opt. Soc. Am. 31, 213 (1941).
    [CrossRef]
  4. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, Phys. Rev. Lett. 94, 113901 (2005).
    [CrossRef] [PubMed]
  5. C. Genet, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. A 22, 998 (2005).
    [CrossRef]
  6. R. W. Wood, Phys. Rev. 48, 928 (1935).
    [CrossRef]
  7. E. Altewischer, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. B 20, 1927 (2003).
    [CrossRef]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  9. The lattice constant was obtained from diffraction measurements with an He-Ne laser.
  10. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  12. The effective index is based on the calculated surface plasmon of gold with a 100 nm layer of sol-gel glass.
  13. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, Appl. Phys. Lett. 81, 3239 (2002).
    [CrossRef]
  14. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
    [CrossRef]

2005 (3)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. A 22, 998 (2005).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[CrossRef]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, Appl. Phys. Lett. 81, 3239 (2002).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1941 (1)

1935 (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Appl. Phys. Lett. (1)

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, Appl. Phys. Lett. 81, 3239 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Phys. Rev. (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Phys. Rev. B (4)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Other (2)

The lattice constant was obtained from diffraction measurements with an He-Ne laser.

The effective index is based on the calculated surface plasmon of gold with a 100 nm layer of sol-gel glass.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scanning electron microscope image of the metal hole array created using an imprinting technique. The holes are 132 nm in diameter and each hole contains an 650 nm high glass pillar. The array has a lattice constant a = 760 nm .

Fig. 2
Fig. 2

Transmission spectra for p-polarized light of a conventional metal hole array (solid curve) and a metal hole array with pillars (dashed curve). Spectra are shown for normal incidence (bottom) and 15° angle of incidence (top). The arrows indicate the ( 0 , ± 1 ) resonance for a 15° angle of incidence. The inset shows the wave vector k , a reciprocal lattice vector G in the (0,1) direction and the propagation direction of the two ( 0 , ± 1 ) modes.

Fig. 3
Fig. 3

Gray scale plots of the measured transmission as a function of angle of incidence and wavelength for the metal hole array without pillars (top) and with pillars (bottom). The gray scale ranges from 0% to 3% transmission. The lines indicate the frequencies calculated from Eqs. (1, 2). The solid lines are for modes on the glass side, while the dashed lines are for modes on the air side.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k = k SP + G ,
k SP ( ω ) = ω c ( ε d ε m ( ω ) ε d + ε m ( ω ) ) 1 2 ,

Metrics