Abstract

A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, M. Weber, and M. Wickham, Proc. SPIE 6102, 61020U-1 (2006).
  2. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, Opt. Lett. 31, 1247 (2006).
    [CrossRef] [PubMed]
  3. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  4. G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, and M. Wickham, IEEE J. Sel. Top. Quantum Electron. 13, 460 (2007).
    [CrossRef]
  5. H. Dammann and K. Gortler, Opt. Commun. 3, 312 (1971).
    [CrossRef]
  6. J. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
    [CrossRef]
  7. G. Hergenhan, B. Lücke, and U. Brauch, Appl. Opt. 42, 1667 (2003).
    [CrossRef] [PubMed]
  8. D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314-1 (2007).
  9. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, L. Anping, and E. C. Honea, IEEE J. Sel. Top. Quantum Electron. 13, 487 (2007).
    [CrossRef]

2007 (3)

G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, and M. Wickham, IEEE J. Sel. Top. Quantum Electron. 13, 460 (2007).
[CrossRef]

D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314-1 (2007).

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, L. Anping, and E. C. Honea, IEEE J. Sel. Top. Quantum Electron. 13, 487 (2007).
[CrossRef]

2006 (2)

2005 (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

2003 (1)

1986 (1)

J. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

1971 (1)

H. Dammann and K. Gortler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, and M. Wickham, IEEE J. Sel. Top. Quantum Electron. 13, 460 (2007).
[CrossRef]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, L. Anping, and E. C. Honea, IEEE J. Sel. Top. Quantum Electron. 13, 487 (2007).
[CrossRef]

Opt. Commun. (1)

H. Dammann and K. Gortler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, M. Weber, and M. Wickham, Proc. SPIE 6102, 61020U-1 (2006).

D. Walton, S. Gray, J. Wang, M. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314-1 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Near-field and far-field intensity distributions measured with a close-packed, phase-locked array of four 100 W fiber beamlets (from [1]).

Fig. 2
Fig. 2

System architecture for DOE-based CBC.

Fig. 3
Fig. 3

Far-field distribution of five-element phase-locked fiber array combined using a DOE.

Tables (1)

Tables Icon

Table 1 Comparison of Measured and Calculated Combination Efficiencies a

Metrics