Abstract

Numerical simulations were used to design a variety of high-Q resonant cavities for integration into a terahertz 2D photonic crystal waveguide. After fabrication, the transmission characteristics of each integrated cavity were explored. These photonic waveguide-coupled cavities demonstrate resonances with linewidths approaching 10GHz. The results compare favorably to previous observations of rectangular waveguide cavities. Good agreement between the experimental results and the numerical simulations was obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C.-Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
    [CrossRef]
  2. J. Nadeau, V. Ilchenko, D. Kossakovski, G. Bearman, and L. Maleki, Proc. SPIE 4629, 172 (2002).
    [CrossRef]
  3. M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
    [CrossRef]
  4. J. Zhang and D. Grischkowsky, J. Opt. Soc. Am. B 20, 1894 (2003).
    [CrossRef]
  5. A. L. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
    [CrossRef]
  6. Z. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
    [CrossRef] [PubMed]
  7. Y. Zhao and D. R. Grischkowsky, IEEE Trans. Microwave Theory Tech. 55, 656 (2007).
    [CrossRef]
  8. P. George, C. Manolatou, F. Rana, A. Bingham, and D. Grischkowsky, Appl. Phys. Lett. 91, 191122 (2007).
    [CrossRef]
  9. H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119 (2005).
    [CrossRef]
  10. T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, Appl. Phys. Lett. 89, 173508 (2006).
    [CrossRef]
  11. A. L. Bingham and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. (2007), accepted for publication.
  12. M. Qiu, F2P: finite-difference time-domain 2D simulator for photonic devices, http://www.imit.kth.se/info/FOFU/PC/F2p/
  13. A. Bingham, Y. Zhao, and D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005).
    [CrossRef]
  14. M. van Exter and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
    [CrossRef]
  15. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]

2007 (3)

Y. Zhao and D. R. Grischkowsky, IEEE Trans. Microwave Theory Tech. 55, 656 (2007).
[CrossRef]

P. George, C. Manolatou, F. Rana, A. Bingham, and D. Grischkowsky, Appl. Phys. Lett. 91, 191122 (2007).
[CrossRef]

A. L. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

2006 (2)

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, Appl. Phys. Lett. 89, 173508 (2006).
[CrossRef]

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

2005 (2)

A. Bingham, Y. Zhao, and D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (2)

C.-Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

J. Nadeau, V. Ilchenko, D. Kossakovski, G. Bearman, and L. Maleki, Proc. SPIE 4629, 172 (2002).
[CrossRef]

2000 (1)

1990 (1)

M. van Exter and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[CrossRef]

Appl. Phys. Lett. (5)

P. George, C. Manolatou, F. Rana, A. Bingham, and D. Grischkowsky, Appl. Phys. Lett. 91, 191122 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, Appl. Phys. Lett. 89, 173508 (2006).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

A. L. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

Y. Zhao and D. R. Grischkowsky, IEEE Trans. Microwave Theory Tech. 55, 656 (2007).
[CrossRef]

M. van Exter and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

C.-Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. Nadeau, V. Ilchenko, D. Kossakovski, G. Bearman, and L. Maleki, Proc. SPIE 4629, 172 (2002).
[CrossRef]

Other (2)

A. L. Bingham and D. Grischkowsky, IEEE Microw. Wirel. Compon. Lett. (2007), accepted for publication.

M. Qiu, F2P: finite-difference time-domain 2D simulator for photonic devices, http://www.imit.kth.se/info/FOFU/PC/F2p/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM images of the four waveguide coupled cavities.

Fig. 2
Fig. 2

Output THz pulses from (a) WG-1, (b) WG-2, (c) WG-3, (d) WG-4, and (e) WG-5.

Fig. 3
Fig. 3

Normalized amplitude spectrum of (a) WG-1, (b) WG-2, (c) WG-3, (d) WG-4, and (e) WG-5.

Fig. 4
Fig. 4

Comparison of amplitude spectra of the FDTD simulation (solid curve) and experimental output (dashed curve with dots) from WG-4 in the first passband.

Tables (1)

Tables Icon

Table 1 Comparison of v o and Δ v for the Experimental Results and the Numerical Simulations of the Different Cavities; These Values Are Considered Accurate to ± 3 GHz

Metrics