Abstract

We propose a new mirror architecture, which is solely based upon structuring of the surface of a monolithic, possibly monocrystalline, bulk material. We found that a structure of T-shaped ridges of a subwavelength grating can theoretically provide 100% reflectivity. Since no material needs to be added to the mirror device, lowest mechanical loss can also be expected. Our approach might have compelling applications as a new light–matter interface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).
    [CrossRef]
  2. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007).
    [CrossRef] [PubMed]
  3. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002).
    [CrossRef] [PubMed]
  4. H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, arXiv:quant-ph/0702258v3 (2007).
  5. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001).
    [CrossRef]
  6. P. Aufmuth and K. Danzmann, New J. Phys. 7, 202 (2005).
    [CrossRef]
  7. Y. Levin, Phys. Rev. D 57, 659 (1998).
    [CrossRef]
  8. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).
    [CrossRef] [PubMed]
  9. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, Opt. Lett. 17, 363 (1992).
    [CrossRef] [PubMed]
  10. D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, J. Low Temp. Phys. 30, 621 (1978).
    [CrossRef]
  11. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Class. Quantum Grav. 23, 7297 (2006).
    [CrossRef]
  12. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
    [CrossRef]
  13. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  14. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
    [CrossRef]
  15. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
    [CrossRef]
  16. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, J. Mod. Opt. 53, 1995 (2006).
    [CrossRef]
  17. P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
    [CrossRef]
  18. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, Opt. Express 13, 10448 (2005).
    [CrossRef] [PubMed]
  19. R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, W. Vodel, A. Tünnermann, and P. Seidel, New J. Phys. 9, 225 (2007).
    [CrossRef]
  20. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  21. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. A 74, 051802 (2006).
    [CrossRef]

2007 (3)

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, W. Vodel, A. Tünnermann, and P. Seidel, New J. Phys. 9, 225 (2007).
[CrossRef]

2006 (3)

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. A 74, 051802 (2006).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, J. Mod. Opt. 53, 1995 (2006).
[CrossRef]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Class. Quantum Grav. 23, 7297 (2006).
[CrossRef]

2005 (2)

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

2002 (1)

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

2001 (1)

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001).
[CrossRef]

1999 (1)

P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).
[CrossRef]

1998 (1)

Y. Levin, Phys. Rev. D 57, 659 (1998).
[CrossRef]

1997 (1)

1996 (1)

P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

1992 (2)

1985 (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

1981 (1)

1978 (1)

D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, J. Low Temp. Phys. 30, 621 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

Class. Quantum Grav. (1)

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Class. Quantum Grav. 23, 7297 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

J. Low Temp. Phys. (1)

D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, J. Low Temp. Phys. 30, 621 (1978).
[CrossRef]

J. Mod. Opt. (2)

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, J. Mod. Opt. 53, 1995 (2006).
[CrossRef]

P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

New J. Phys. (2)

R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, W. Vodel, A. Tünnermann, and P. Seidel, New J. Phys. 9, 225 (2007).
[CrossRef]

P. Aufmuth and K. Danzmann, New J. Phys. 7, 202 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. A 74, 051802 (2006).
[CrossRef]

Phys. Rev. D (2)

Y. Levin, Phys. Rev. D 57, 659 (1998).
[CrossRef]

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).
[CrossRef]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, Phys. Rev. Lett. 98, 150802 (2007).
[CrossRef] [PubMed]

S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Other (1)

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, arXiv:quant-ph/0702258v3 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Different types of resonant waveguide gratings: (a) a waveguide corrugated at its surface, (b) stand-alone high-index grating ridges, and (c) reduction of the low-index substrate to a layer.

Fig. 2
Fig. 2

Proposed architecture of a monolithic low-loss surface. The low-index layer is realized by a grating with an LDC, providing an effective medium ( n eff ) .

Fig. 3
Fig. 3

(a) Reflectivity over duty cycle f up and groove depth d up for fixed parameters f low = 0.25 and d low = 2 μ m ; (b) reflectivity over duty cycle f low and groove depth d low for fixed parameters f up = 0.56 and d up = 350 nm .

Fig. 4
Fig. 4

(a) Spectral and (b) angular behavior of the reflectivity for the parameters given in Eqs. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p < λ ( to permit only zeroth order in air ) ,
λ n H < p ( first orders in high - index layer ) ,
p < λ n L ( only zeroth order in substrate ) ,
n H = 3.5 λ = 1550 nm ϕ = 0 ° p = 700 nm f low = 0.26 d low = 430 nm f up = 0.56 d up = 350 nm .

Metrics