Abstract

We exploit cross-phase modulation by a strong driving pulse onto a weaker probe pulse at a different wavelength to induce the formation of an X wave possessing the typical nondispersive and nondiffractive propagation properties.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sonajalg and P. Saari, Opt. Lett. 15, 1163 (1996).
  2. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
    [CrossRef] [PubMed]
  3. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, Phys. Rev. Lett. 96, 193901 (2006).
    [CrossRef] [PubMed]
  4. M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 92, 253901 (2004).
    [CrossRef] [PubMed]
  5. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [CrossRef]
  6. D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P. Di Trapani, and A. Couairon, Opt. Lett. 32, 184 (2007).
    [CrossRef]
  7. D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney, A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and P. Di Trapani, Opt. Express 15, 13077 (2007).
    [CrossRef] [PubMed]
  8. M. Kolesik and J. V. Moloney, Opt. Express 16, 2971 (2008).
    [CrossRef] [PubMed]
  9. D. Faccio, P. Di Trapani, S. Minardi, A. Bramati, F. Bragheri, C. Liberale, V. Degiorgio, A. Dubietis, and A. Matijosius, J. Opt. Soc. Am. B 22, 862 (2005).
    [CrossRef]
  10. J. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
    [CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (1)

D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, Phys. Rev. Lett. 96, 193901 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef] [PubMed]

2003 (1)

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

1996 (1)

H. Sonajalg and P. Saari, Opt. Lett. 15, 1163 (1996).

1992 (1)

J. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef] [PubMed]

Averchi, A.

Bragheri, F.

Bramati, A.

Conti, C.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Couairon, A.

Degiorgio, V.

Di Trapani, P.

Dubietis, A.

Faccio, D.

Greenleaf, J. F.

J. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef] [PubMed]

Jedrkiewicz, O.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Kolesik, M.

Liberale, C.

Lu, J.

J. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef] [PubMed]

Matijosius, A.

Minardi, S.

Moloney, J. V.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Piskarskas, A.

Polesana, P.

Porras, M. A.

D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, Phys. Rev. Lett. 96, 193901 (2006).
[CrossRef] [PubMed]

Saari, P.

H. Sonajalg and P. Saari, Opt. Lett. 15, 1163 (1996).

Sonajalg, H.

H. Sonajalg and P. Saari, Opt. Lett. 15, 1163 (1996).

Tamosauskas, G.

Trillo, S.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Trull, J.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Valiulis, G.

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

Wright, E. M.

M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).
[CrossRef] [PubMed]

D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, Phys. Rev. Lett. 96, 193901 (2006).
[CrossRef] [PubMed]

M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 92, 253901 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

( θ , λ ) Spectrum of the 527 nm probe pulse after the sample (a) when the IR pulse is blocked and (b) when the IR filamenting pulse is copropagating with the probe in the sample. XPM induces the formation of conical structures on the probe spectrum. The dashed curve is the plot of Eq. (1), describing the X-wave shape with the experimental group velocity of the X wave ( v x ) deduced from the spectrum of the filament as described in [7].

Fig. 2
Fig. 2

(a) Normalized intensity profile of the probe at the output of the sample in the presence of XPM. The dashed curve is the fit of the profile with a rational quadratic function. In the insets the near field of the green pulse is acquired with the CCD system (b) without XPM and (c) with XPM. Note that the probe energy was unchanged between the two measurements. (d) Probe beam FWHM along propagation after the sample (dashed curve with solid circles), nondiffracting over 5 mm . The theoretically predicted broadening for a Gaussian beam with the same FWHM is shown for comparison (dashed curve).

Fig. 3
Fig. 3

(a) Experimentally measured ( θ , λ ) spectrum for the probe pulse at 400 nm reshaped by XPM driven from a PBB at 800 nm . The white curve is the X-wave relation curve calculated with Eq. (1), where v x = 2.043 × 10 8 m s is the theoretically predicted group velocity for the PBB. Numerically simulated ( θ , λ ) spectrum for the probe pulse (b) before interaction with the driving pulse and (c) with XPM induced by the PBB.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k z ( ω ) = k ( ω 0 ) + ω ω 0 v x ,

Metrics