Abstract

A new regime of pulse parameters in a normal-dispersion fiber laser is identified. Dissipative solitons exist with remarkably large pulse duration and chirp, along with large pulse energy. A low-repetition-rate oscillator that generates pulses with large and linear chirp can replace the standard oscillator, stretcher, pulse-picker, and preamplifier in a chirped-pulse fiber amplifier. The theoretical properties of such a giant-chirp oscillator are presented. A fiber laser designed to operate in the new regime generates 150ps pulses at a 3MHz repetition rate. Amplification of these pulses to 1μJ energy with pulse duration as short as 670fs demonstrates the promise of this new approach.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Lett. 56, 219 (1985).
  2. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  3. A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140 (2008).
    [CrossRef]
  4. W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  5. A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 32, 2408 (2007).
    [CrossRef] [PubMed]
  6. L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
    [CrossRef]

2008

A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 77, 023814 (2008).
[CrossRef]

2007

2006

1986

L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
[CrossRef]

1985

D. Strickland and G. Mourou, Opt. Lett. 56, 219 (1985).

Buckley, J.

Chong, A.

Gordon, J.

L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
[CrossRef]

Islam, M.

L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
[CrossRef]

Mollenauer, L.

L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, Opt. Lett. 56, 219 (1985).

Renninger, W.

Renninger, W. H.

Strickland, D.

D. Strickland and G. Mourou, Opt. Lett. 56, 219 (1985).

Wise, F.

Wise, F. W.

IEEE J. Quantum Electron.

L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22, 157 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Components of fiber CPA systems. The small boxes inside the GCO box represent the components of a standard CPA system that are replaced by the giant-chirp oscillator.

Fig. 2
Fig. 2

Variation of exact solution normalized pulse parameters with normalized dispersion.

Fig. 3
Fig. 3

Simulation of a GCO with realistic parameters: (a) oscillator spectrum; (b) dechirped pulse; inset, chirped pulse.

Fig. 4
Fig. 4

Long chirped pulse mode: (a) oscillator spectrum; (b) oscillator pulse measured by a detector with 50 ps resolution (the additional signal on the right of the pulse is due to capacitive ringing from the cable); (c) solid curve, amplified spectrum; dotted curve, amplified spontaneous emission spectrum; (d) autocorrelation of amplified and dechirped pulse. The pulse duration assuming a deconvolution factor of 1.5 is shown. The trace is asymmetric because the pulse duration is close to the limit of delay in the autocorrelator.

Fig. 5
Fig. 5

Narrow-bandwidth mode: (a) oscillator spectrum; (b) oscillator pulse; (c) amplified spectrum; (d) intensity autocorrelation of amplified and dechirped pulse, which is too long for interferometric measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U z = g U + ( 1 i D Ω 2 ) U t t + ( α γ + i ) U 2 U + δ γ 2 U 4 U ,
U = A cosh ( t τ ) + B e i ( β 2 ) ln ( cosh ( t τ ) + B ) + i θ z .

Metrics