Abstract

We study in detail the optical forces generated by a plasmonic trap on a plasmonic nanoparticle. The permittivity of the trapped particle is tuned using a Drude model. The interplay between the plasmon resonances of the trap and of the particle can produce different regimes leading to attractive or repulsive forces. Hence a particle will be trapped or repulsed depending on its permittivity. Such a physical system should provide new functionalities for lab-on-the-chip applications.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation

Pamela Jordan, Jon Cooper, Graeme McNay, Frances T. Docherty, Duncan Graham, W. Ewen Smith, Gavin Sinclair, and Miles J. Padgett
Opt. Express 13(11) 4148-4153 (2005)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

Integration of plasmonic trapping in a microfluidic environment

Lina Huang, Sebastian J. Maerkl, and Olivier J. F. Martin
Opt. Express 17(8) 6018-6024 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription