Abstract

We study in detail the optical forces generated by a plasmonic trap on a plasmonic nanoparticle. The permittivity of the trapped particle is tuned using a Drude model. The interplay between the plasmon resonances of the trap and of the particle can produce different regimes leading to attractive or repulsive forces. Hence a particle will be trapped or repulsed depending on its permittivity. Such a physical system should provide new functionalities for lab-on-the-chip applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  2. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
    [CrossRef] [PubMed]
  5. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, Appl. Opt. 45, 5185 (2006).
    [CrossRef] [PubMed]
  6. F. Claro and R. Rojas, Appl. Phys. Lett. 65, 2743 (1994).
    [CrossRef]
  7. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 20, 1201 (2003).
    [CrossRef]
  8. K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
    [CrossRef]
  9. B. Sepulveda, J. Alegret, and M. Käll, Opt. Express 15, 14914 (2007).
    [CrossRef] [PubMed]
  10. E. Lamothe, G. Lévêque, and O. J. F. Martin, Opt. Express 15, 9631 (2007).
    [CrossRef] [PubMed]
  11. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007).
    [CrossRef] [PubMed]
  12. R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
    [CrossRef] [PubMed]
  13. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
    [CrossRef] [PubMed]
  14. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
    [CrossRef]
  15. X. Miao and L. Y. Lin, IEEE J. Sel. Top. Quantum Electron. 13, 1655 (2007).
    [CrossRef]
  16. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
    [CrossRef]
  17. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
    [CrossRef]
  18. J. B. Jackson and N. J. Halas, J. Phys. Chem. B 105, 2743 (2001).
    [CrossRef]
  19. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
    [CrossRef] [PubMed]
  20. O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
    [CrossRef]
  21. M. Paulus and O. J. F. Martin, J. Opt. Soc. Am. A 18, 854 (2001).
    [CrossRef]
  22. P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
    [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  24. L. Novotny and C. Henkel, Opt. Lett. 33, 1029 (2008).
    [CrossRef] [PubMed]

2008

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

L. Novotny and C. Henkel, Opt. Lett. 33, 1029 (2008).
[CrossRef] [PubMed]

2007

2006

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, Appl. Opt. 45, 5185 (2006).
[CrossRef] [PubMed]

2005

R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
[CrossRef] [PubMed]

K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
[CrossRef]

2003

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 20, 1201 (2003).
[CrossRef]

2001

J. B. Jackson and N. J. Halas, J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

M. Paulus and O. J. F. Martin, J. Opt. Soc. Am. A 18, 854 (2001).
[CrossRef]

2000

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

1999

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

1998

O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
[CrossRef]

1994

F. Claro and R. Rojas, Appl. Phys. Lett. 65, 2743 (1994).
[CrossRef]

1986

1970

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Alegret, J.

Arias-Gonzalez, J. R.

Ashkin, A.

Averitt, R. D.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

Chaumet, P. C.

Chu, S.

Claro, F.

F. Claro and R. Rojas, Appl. Phys. Lett. 65, 2743 (1994).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Dziedzic, J. M.

Elson, J. M.

K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

J. B. Jackson and N. J. Halas, J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

Halterman, K.

K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Henkel, C.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jackson, J. B.

J. B. Jackson and N. J. Halas, J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

Käll, M.

Lamothe, E.

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

Lévêque, G.

Lin, L. Y.

X. Miao and L. Y. Lin, IEEE J. Sel. Top. Quantum Electron. 13, 1655 (2007).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Martin, O. J.

Martin, O. J. F.

O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
[CrossRef]

Miao, X.

X. Miao and L. Y. Lin, IEEE J. Sel. Top. Quantum Electron. 13, 1655 (2007).
[CrossRef]

Nieto-Vesperinas, M.

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

Novotny, L.

Oldenburg, S. J.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

Paulus, M.

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
[CrossRef] [PubMed]

Piller, N. B.

O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
[CrossRef]

Quidant, R.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, Opt. Lett. 30, 1009 (2005).
[CrossRef] [PubMed]

Rahmani, A.

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Rojas, R.

F. Claro and R. Rojas, Appl. Phys. Lett. 65, 2743 (1994).
[CrossRef]

Sepulveda, B.

Singh, S.

K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

Westcott, S. L.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

Zelenina, A. S.

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Claro and R. Rojas, Appl. Phys. Lett. 65, 2743 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

X. Miao and L. Y. Lin, IEEE J. Sel. Top. Quantum Electron. 13, 1655 (2007).
[CrossRef]

J. Chem. Phys.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, J. Chem. Phys. 111, 4729 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

J. B. Jackson and N. J. Halas, J. Phys. Chem. B 105, 2743 (2001).
[CrossRef]

Nano Lett.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef] [PubMed]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Nat. Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Nature

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

K. Halterman, J. M. Elson, and S. Singh, Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Phys. Rev. E

O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
[CrossRef]

Phys. Rev. Lett.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System under study: a cylindrical metallic patch is deposited on a glass substrate and illuminated under total internal reflection. The patch has a 50 nm radius and a 40 nm thickness; it is used to trap a metallic sphere with a R = 10 nm radius. Both metals are described with a Drude model using different plasma frequencies.

Fig. 2
Fig. 2

(a) Absorption cross section σ abs for R = 10 nm spheres described by a permittivity given by Eq. (1) with plasma frequencies between ω p = 0.6 and 1.8 eV . The plasmon resonance of the trapping patch is shown as a solid curve with dots. (b) Spectra of the vertical force F z experienced by the different spheres.

Fig. 3
Fig. 3

Vertical force F z experienced by a metallic sphere with R = 10 nm radius, as a function of its plasmon resonance frequency ω sphere . The vertical dashed line indicates the plasmon resonance frequency ω patch of the trapping patch.

Fig. 4
Fig. 4

Vector plots of the horizontal force experienced by a metallic sphere located 10 nm above the patch. Two different Drude models are considered for the sphere: ω p = ( a ) 1.2 and (b) 1.4 eV .

Fig. 5
Fig. 5

Force spectra experienced by different R = 10 nm radius metallic spheres with plasma frequencies between ω p = 0.6 and 1.8 eV , for a larger patch with radius 100 nm and height 40 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = 1 ω p 2 ω 2 + i γ ω ,
σ abs ( ω ) = 4 k π R 3 I { ε ( ω ) ε B ε ( ω ) + 2 ε B } ,

Metrics