Abstract

Confocal microscopy was initially developed to image complex circuits and material defects. Previous imaging studies yielded only qualitative data about the location and number of defects. In the present study, this noninvasive method is used to obtain quantitative information about the Q factor of an optical resonant cavity. Because the intensity of the fluorescent signal measures the number of defects in the resonant cavity, this signal is a measure of the number of surface scattering defects, one of the dominant loss mechanisms in optical microcavities. The Q of the cavities was also determined using conventional linewidth measurements. Based upon a quantitative comparative analysis of these two techniques, it is shown that the Q can be determined without a linewidth measurement, allowing for a noninvasive characterization technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. In confocal microscopy, images are generated through the use of pinholes, which selectively capture light from the in-focus section of the illuminated image. The fluorescent light returning to the objective includes both fluorescence from the optical section in focus as well as other depths of the sample. The pinhole size can be expanded to allow more light in or it can be narrowed to restrict light. By reducing the size of the pinhole, light from shallower or deeper sections (relative to the optical section in question) can be rejected, thus allowing for imaging of a very thin depth of the sample.
  2. T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
    [CrossRef]
  3. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
    [CrossRef] [PubMed]
  4. D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
    [CrossRef] [PubMed]
  5. A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
    [CrossRef]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  7. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef] [PubMed]
  8. K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002).
    [PubMed]
  9. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, Opt. Express 15, 17206 (2007).
    [CrossRef] [PubMed]
  10. A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
    [CrossRef] [PubMed]
  11. C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
    [CrossRef]
  12. M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 4694 (2007).
    [CrossRef] [PubMed]
  13. K. Srinivasan, M. Borselli, and O. Painter, Opt. Express 14, 1094 (2006).
    [CrossRef] [PubMed]
  14. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  15. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
    [CrossRef]
  16. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
    [CrossRef] [PubMed]
  17. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
    [CrossRef]
  18. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef] [PubMed]
  19. T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
    [CrossRef]

2008 (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

2007 (5)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 4694 (2007).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, Opt. Express 15, 17206 (2007).
[CrossRef] [PubMed]

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

2004 (2)

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[CrossRef]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

1996 (1)

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

1980 (1)

T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
[CrossRef]

Adibi, A.

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Asano, T.

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

Borselli, M.

Buonassisi, T.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Cai, Z. H.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Chao, C. Y.

C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

Cheng, M. M. C.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Dalton, L. R.

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

Espina, V.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

Fedele, R.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Ferrari, M.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Gannaway, J. N.

T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
[CrossRef]

Geho, D. H.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Gorodetsky, M. L.

Grecco, H. E.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Guo, L. J.

C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

Hagino, H.

Heald, S. M.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Heintzmann, R.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Herrmann, P.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Ilchenko, V. S.

Istratov, A. A.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Jares-Erijman, E. A.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Johnson, P.

T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
[CrossRef]

Jovin, T. M.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Killian, K.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Lai, B.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

Lidke, D. S.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Liotta, L. A.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Marcus, M. A.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Nagy, P.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Nijdam, A. J.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Noda, S.

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

Painter, O.

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

Petricoin, E. F.

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

Post, J. N.

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Rabiei, P.

Savchenkov, A. A.

Soltani, M.

Song, B. S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Srinivasan, A.

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

Srinivasan, K.

Steier, W. H.

Takahashi, Y.

Tanaka, Y.

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

Vahala, K. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Weber, E. R.

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Wilson, T.

T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
[CrossRef]

Yegnanarayanan, S.

Zhang, C.

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[CrossRef]

Biomaterials (1)

A. J. Nijdam, M. M. C. Cheng, D. H. Geho, R. Fedele, P. Herrmann, K. Killian, V. Espina, E. F. Petricoin, L. A. Liotta, and M. Ferrari, Biomaterials 28, 550 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Microsc. (1)

T. Wilson, J. N. Gannaway, and P. Johnson, J. Microsc. 118, 309 (1980).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

Nano Lett. (1)

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Nat. Biotechnol. 22, 198 (2004).
[CrossRef] [PubMed]

Nature (2)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

T. Buonassisi, A. A. Istratov, M. A. Marcus, B. Lai, Z. H. Cai, S. M. Heald, and E. R. Weber, Nature Mater. 4, 676 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Science (2)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Other (1)

In confocal microscopy, images are generated through the use of pinholes, which selectively capture light from the in-focus section of the illuminated image. The fluorescent light returning to the objective includes both fluorescence from the optical section in focus as well as other depths of the sample. The pinhole size can be expanded to allow more light in or it can be narrowed to restrict light. By reducing the size of the pinhole, light from shallower or deeper sections (relative to the optical section in question) can be rejected, thus allowing for imaging of a very thin depth of the sample.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscopy (SEM) image of an array of microtoroid resonators. (b) Confocal image (raw data) of the silica microdisk. It is important to note that the microdisk is fairly uniform in intensity. The highly reflective center region is the silicon pillar.

Fig. 2
Fig. 2

Comparative characterization of two ultra-high-Q devices. (a) Resonant frequency with Q = 1.68 × 10 8 . (b) Confocal and (c) reflection micrograph of device. (d) Resonant frequency with Q = 2.25 × 10 8 . (e) Confocal and (f) reflection micrograph of device.

Fig. 3
Fig. 3

Comparative characterization of lower Q devices. (a) Resonant frequency with Q = 1.39 × 10 7 . (b) Confocal and (c) reflection micrograph of device. (d) Resonant frequency with Q = 4.81 × 10 6 . (e) Confocal and (f) reflection micrograph of device.

Fig. 4
Fig. 4

As the percentage of scattered light in the toroid decreases, the Q factor increases. This increase in Q is directly related to the decrease in the number and size of surface inhomogeneities. The curve is the fit to the experimental results, based on the theoretical framework outlined.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q ss = λ 2 D 2 π 2 σ 2 B ,

Metrics