Abstract

We demonstrate tunable superluminal propagation in a silicon microphotonic device in a solid-state room-temperature device of tens of micrometers in dimension allowing easy integration with high-bandwidth room-temperature systems. We achieve tunable negative delays up to 85ps and effective group indices tunable between 1158 and 312.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
    [CrossRef]
  2. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).
    [CrossRef] [PubMed]
  3. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
    [CrossRef] [PubMed]
  4. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
    [CrossRef] [PubMed]
  5. H. He, Z. Hu, Y. Wang, L. Wang, and S. Zhu, Opt. Lett. 31, 2486 (2006).
    [CrossRef] [PubMed]
  6. L. Thévenaz, Nat. Photonics 2, 474 (2008).
    [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
    [CrossRef] [PubMed]
  8. S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
    [CrossRef]
  9. M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
    [CrossRef]
  10. M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
    [CrossRef]
  11. Q. Xu, J. Shakya, and M. Lipson, Opt. Express 14, 6463 (2006).
    [CrossRef] [PubMed]
  12. S. Manipatruni, C. B. Poitras, Q. Xu, and M. Lipson, Opt. Lett. 33, 1644 (2008).
    [CrossRef] [PubMed]
  13. M. Borselli, Ph.D. dissertation (California Institute of Technology, 2006).
  14. J. B. Khurgin, Opt. Lett. 32, 133 (2007).
    [CrossRef]

2008 (2)

2007 (1)

2006 (2)

2005 (1)

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
[CrossRef] [PubMed]

2001 (1)

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[CrossRef]

1994 (1)

M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).
[CrossRef] [PubMed]

Akulshin, A. M.

M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[CrossRef]

Akulshin, M.

M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

Barreiro, S.

M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[CrossRef]

Belmonte, M.

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Borselli, M.

M. Borselli, Ph.D. dissertation (California Institute of Technology, 2006).

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Chiao, R. Y.

M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).
[CrossRef] [PubMed]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Farca, G.

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Gauthier, D. J.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
[CrossRef] [PubMed]

He, H.

Hu, Z.

Khurgin, J. B.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Laporta, P.

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Lezama, A.

M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

Lezama, M.

M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[CrossRef]

Lipson, M.

Longhi, S.

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

Manipatruni, S.

Marano, M.

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

Naweed, M.

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
[CrossRef] [PubMed]

Poitras, C. B.

Rosenberger, A. T.

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Shakya, J.

Shopova, S. I.

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Steinberg, M.

M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).
[CrossRef] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
[CrossRef] [PubMed]

Thévenaz, L.

L. Thévenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Wang, L.

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

Wang, Y.

Xu, Q.

Zhu, S.

Nat. Photonics (1)

L. Thévenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Nature (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature 425, 695 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (3)

M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).
[CrossRef] [PubMed]

M. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999).
[CrossRef]

M. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Phys. Rev. E (1)

S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Other (1)

M. Borselli, Ph.D. dissertation (California Institute of Technology, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top-view microscope image of the device.

Fig. 2
Fig. 2

Formation of an induced absorptionlike spectral feature line at Port A.

Fig. 3
Fig. 3

(a) All optical analog to EIA. An optical analog to EIA is created when light from the super mode formed between the reflectors coherently cancels the light coupled into port A (in Fig. 2). The sharpness of the spectral feature is controlled by the bandwidth of the super mode, which is limited only by the intrinsic quality factor in silicon. (b) Optical advance through the device measured at the induced absorption spectral feature.

Fig. 4
Fig. 4

Experimental setup. The black lines represent optical fiber. Lines connecting modulator rf input and oscilloscope trigger input represent coaxial cables. A high speed electro-optic modulator generates a sinusoidal probe beam of 500 MHz . Light is coupled to the device and compared with a reference arm to determine the delay or advance. An argon laser beam at 514.5 nm is used to thermally tune the structure to vary the bandwidth of the induced absorption feature.

Fig. 5
Fig. 5

Measured tunable optical advance through the device. The reflectivity of the mirrors is frequency sensitive and can be controlled by the tuning of one or both of the reflectors. The tunable bandwidth of the spectral feature is shown in (a). The measured tunable optical pulse advance is shown in (b). The tuning of the reflectors was done here using a 514.5 nm argon laser incident on the device.

Metrics