Abstract

We report an improved fabrication method for C-shaped near-field apertures resonant in the near-IR regime. The apertures are created in a metal layer on a silicon nitride membrane using a focused ion beam and a through membrane milling technique that avoids two problems with fabricating very small apertures: gallium contamination and edge rounding. Finite-difference time-domain simulations predict a 63× more intense near field with a 2.2× smaller spot versus conventionally milled apertures. We verify the position of the simulated resonance peaks with experimental far-field transmission measurements where we also find an increase of 8.8× in intensity. Our method has applications to many other plasmonic devices including bow-tie and fractal apertures, periodic arrays, and gratings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, Science 311, 189 (2006).
    [CrossRef] [PubMed]
  2. K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
    [CrossRef]
  3. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, Opt. Express 14, 9902 (2006).
    [CrossRef] [PubMed]
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
    [CrossRef] [PubMed]
  5. X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
    [CrossRef]
  6. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
    [CrossRef]
  7. C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.
  8. A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
    [CrossRef]
  9. D. Pickard, Ph.D. dissertation (Stanford University, 2006).
  10. K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
    [CrossRef]
  11. J. A. Matteo, Ph.D. dissertation (Stanford University, 2005).
  12. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. 349-366.

2007

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

2006

2004

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
[CrossRef]

2003

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

2002

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

1990

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Challener, W.

K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
[CrossRef]

Chen, L.-Y.

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Du, C.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Frey, L.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Fromm, D. P.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. 349-366.

Harmon, B. N.

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Hesselink, L.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
[CrossRef]

Jin, E. X.

Khriachtchev, L.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Kim, K. J.

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Lehrer, C.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Luo, X.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Lynch, D. W.

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

J. A. Matteo, Ph.D. dissertation (Stanford University, 2005).

McDaniel, E.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Melngailis, J.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Mizutani, M.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Moerner, W. E.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Nagaraj, B.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Peng, C.

K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
[CrossRef]

Petersen, S.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Pickard, D.

D. Pickard, Ph.D. dissertation (Stanford University, 2006).

Ramesh, R.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Ryssel, H.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Schuck, P. J.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Sendur, K.

K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
[CrossRef]

Shi, H.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Shi, X.

Stanishevsky, A.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. 349-366.

Takai, M.

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Uppuluri, S. M.

Wang, C.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Wang, L.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

Xu, X.

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Appl. Phys. B

Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. Wang, and X. Luo, Appl. Phys. B 86, 461 (2007).
[CrossRef]

Appl. Phys. Lett.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

J. Appl. Phys.

A. Stanishevsky, B. Nagaraj, J. Melngailis, R. Ramesh, L. Khriachtchev, and E. McDaniel, J. Appl. Phys. 92, 3275 (2002).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, J. Appl. Phys. 96, 2743 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. B

K. J. Kim, B. N. Harmon, L.-Y. Chen, and D. W. Lynch, Phys. Rev. B 42, 8813 (1990).
[CrossRef]

Science

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
[CrossRef] [PubMed]

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Other

J. A. Matteo, Ph.D. dissertation (Stanford University, 2005).

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. 349-366.

D. Pickard, Ph.D. dissertation (Stanford University, 2006).

C. Lehrer, L. Frey, S. Petersen, M. Mizutani, M. Takai, and H. Ryssel, in IEEE Conference on Ion Implantation Technology (IEEE, 2000), pp. 695-698.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) the top view of the mill pattern used in FIB milling and simulation, (b) a sample of the simulated gold surface roughness, (c) a cross section through the tongue of a DMM aperture with Au Ga 2 lining, and (d) a cross section through the tongue of a TMM aperture. Optical illumination is from below and collection from above in (c) and (d) with measurement of the FDTD calculated electric and magnetic fields at the dotted plane.

Fig. 2
Fig. 2

SEM images viewed at 52° of tilt of (a) a DMM aperture and (b) a TMM aperture. AFM images of (c) a DMM aperture and (d) a TMM aperture.

Fig. 3
Fig. 3

Simulated electric field intensity 18 nm from the metal surface for the apertures resonant at 980 nm . (a) DMM aperture with Au Ga 2 layer. The overlay in black (white) shows the aperture perimeter at the entrance (exit) of the metal layer. (b) TMM aperture. The entrance and exit are nearly identical and are shown in the black overlay.

Fig. 4
Fig. 4

Far-field transmission for the two aperture types normalized to the peak value of the TMM curve. Experimental data are shown as solid curves, and simulated data are shown as dashed curves: (a) TMM experimental data, (b) TMM simulated, (c) DMM experimental data, (d) DMM experimental data scaled by a factor of 5, (e) DMM simulated without gallium contamination, and (f) DMM simulated with gallium contamination. Horizontal error bars show the shift in simulated peak position for a 20% error in sputter yields.

Metrics