Abstract

Using optical tweezers combined with luminescence measurements we detected the optical field around two optically trapped silica microspheres partially covered by metal. By monitoring the luminescence of rhodamine 6G we were able to observe an increase of the local field intensity owing to the coupling of the local surface plasmons at the surfaces of two spheres.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, M. Moskovits, and H. Kneipp, eds., in Surface-Enhanced Raman Scattering, Physics and Applications, Vol. 103 of Topics in Applied Physics Series (Springer, 2006).
    [CrossRef]
  2. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
    [CrossRef]
  3. F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
    [CrossRef] [PubMed]
  4. D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
    [CrossRef]
  5. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
    [CrossRef] [PubMed]
  6. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
    [CrossRef] [PubMed]
  7. F. Svedberg and M. Kall, Faraday Discuss. 132, 35 (2006).
    [CrossRef] [PubMed]
  8. P. Jordan, J. Cooper, G. McNay, F. T. Docherty, W. E. Smith, G. Sinclair, and M. J. Padgett, Opt. Lett. 29, 2488 (2004).
    [CrossRef] [PubMed]
  9. K. Berg-Sorensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
    [CrossRef]
  10. O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
    [CrossRef] [PubMed]

2006

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

F. Svedberg and M. Kall, Faraday Discuss. 132, 35 (2006).
[CrossRef] [PubMed]

2005

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

2004

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

P. Jordan, J. Cooper, G. McNay, F. T. Docherty, W. E. Smith, G. Sinclair, and M. J. Padgett, Opt. Lett. 29, 2488 (2004).
[CrossRef] [PubMed]

K. Berg-Sorensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

1995

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

1994

Badenes, G.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Berg-Sorensen, K.

K. Berg-Sorensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Block, S. M.

Cooper, J.

Cormack, I.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Dereux, A.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

Docherty, F. T.

Enger, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Flyvbjerg, H.

K. Berg-Sorensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Ghenuche, P.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Girard, C.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

Goksor, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Jordan, P.

Kall, M.

F. Svedberg and M. Kall, Faraday Discuss. 132, 35 (2006).
[CrossRef] [PubMed]

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Kneipp, H.

K. Kneipp, M. Moskovits, and H. Kneipp, eds., in Surface-Enhanced Raman Scattering, Physics and Applications, Vol. 103 of Topics in Applied Physics Series (Springer, 2006).
[CrossRef]

Kneipp, K.

K. Kneipp, M. Moskovits, and H. Kneipp, eds., in Surface-Enhanced Raman Scattering, Physics and Applications, Vol. 103 of Topics in Applied Physics Series (Springer, 2006).
[CrossRef]

Li, Z.

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

Loza-Alvarez, P.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

McNay, G.

Moskovits, M.

K. Kneipp, M. Moskovits, and H. Kneipp, eds., in Surface-Enhanced Raman Scattering, Physics and Applications, Vol. 103 of Topics in Applied Physics Series (Springer, 2006).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Padgett, M. J.

Prikulis, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Quidant, R.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Sinclair, G.

Smith, W. E.

Svedberg, F.

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

F. Svedberg and M. Kall, Faraday Discuss. 132, 35 (2006).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Svoboda, K.

ten Bloemendal, D.

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Xu, H.

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

Faraday Discuss.

F. Svedberg and M. Kall, Faraday Discuss. 132, 35 (2006).
[CrossRef] [PubMed]

Nano Lett.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

F. Svedberg, Z. Li, H. Xu, and M. Kall, Nano Lett. 6, 2639 (2006).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[CrossRef] [PubMed]

Plasmonics

D. ten Bloemendal, P. Ghenuche, R. Quidant, I. Cormack, P. Loza-Alvarez, and G. Badenes, Plasmonics 1, 41 (2006).
[CrossRef]

Rev. Sci. Instrum.

K. Berg-Sorensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Other

K. Kneipp, M. Moskovits, and H. Kneipp, eds., in Surface-Enhanced Raman Scattering, Physics and Applications, Vol. 103 of Topics in Applied Physics Series (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup where the inset shows the sample with SPCM trapped by two 985 nm beams (gray) and illuminated by the 532 nm beam (black). s is the separation distance measured between the center of of the sphere and the center of the excitation 532 nm beam. (b) Electron microscope image of a 2 μ m SPCM, (c) two trapped 2 μ m spheres seen after the pinhole PH of the confocal system, (d) hot spots at the surface of the SPCM.

Fig. 2
Fig. 2

Difference spectra obtained with (1) an uncoated silica 2 μ m sphere in the center of the 532 nm beam, (2) a single SPCM in the center of the 532 nm beam, and (3) and (4) a pair of SPCMs located symmetrically relative to the center of the 532 nm beam with two separation distances. The inset shows the normalized luminescence spectrum when no spheres are in the confocal volume.

Fig. 3
Fig. 3

Integral luminescence signal versus distance for a single SPCM moving through the excitation beam (open squares) and for two SPCMs approaching each other symmetrically about the 532 nm beam axis (open circles). Insets, right, a histogram of the sphere position; left, frames of a movie showing fluctuations of the luminescence intensity. All values are normalized to the integral luminescence measured without spheres in the excitation beam (shown as a solid curve). A solid square shows the signal when a single plain dielectric sphere is trapped in the center of the 532 nm beam. The vertical dashed line shows the separation distance when the spheres touch.

Fig. 4
Fig. 4

Field intensity in the midpoint between the two particles versus the separation distance. The insets show the field intensity distribution between nanospheres calculated for two separation distances. In the calculation an incident plane wave at a wavelength of 532 nm was used with polarization along the line that unites the centers of the particles.

Metrics