Abstract

We propose a technique for estimating the birefringence correlation length and beat length of a long fiber link based on the measurement of two parameters only, the mean differential group delay and the mean Faraday rotation of a fiber with a small magnetic field applied. The two paramemters can be measured without the need of cutting the fiber.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. A. Wai and C. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  2. A. Galtarossa and L. Palmieri, J. Lightwave Technol. 53, 86 (2004).
  3. M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).
  4. J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [CrossRef] [PubMed]
  5. M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.
  6. L. Palmieri, J. Lightwave Technol. 24, 4075 (2006).
    [CrossRef]
  7. A. Mecozzi, C. Antonelli, and M. Brodsky, Opt. Lett. 33, 1476 (2008).
    [CrossRef] [PubMed]
  8. A. Mecozzi, C. Antonelli, and M. Brodsky, Opt. Lett. 33, 1096 (2008).
    [CrossRef] [PubMed]
  9. A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
    [CrossRef]
  10. A. Mecozzi, Opt. Lett. 33, 1315 (2008).
    [CrossRef] [PubMed]
  11. C. W. Gardiner, Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, 1983).
  12. A. Pizzinat, L. Palmieri, B. S. Marks, C. R. Menyuk, and A. Galtarossa, J. Lightwave Technol. 21, 3355 (2003).
    [CrossRef]
  13. A. Galtarossa, P. Griggio, L. Palmieri, and A. Pizzinat, Opt. Lett. 28, 1639 (2003).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).

2006 (1)

2005 (1)

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

2004 (1)

A. Galtarossa and L. Palmieri, J. Lightwave Technol. 53, 86 (2004).

2003 (2)

2000 (1)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

1997 (1)

A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
[CrossRef]

1996 (1)

P. K. A. Wai and C. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1983 (1)

C. W. Gardiner, Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, 1983).

Antonelli, C.

Boroditsky, M.

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

Brodsky, M.

A. Mecozzi, C. Antonelli, and M. Brodsky, Opt. Lett. 33, 1096 (2008).
[CrossRef] [PubMed]

A. Mecozzi, C. Antonelli, and M. Brodsky, Opt. Lett. 33, 1476 (2008).
[CrossRef] [PubMed]

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

Crunelle, C.

M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).

Etzel, S. M.

A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
[CrossRef]

Feuer, M.

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

Galtarossa, A.

Gardiner, C. W.

C. W. Gardiner, Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, 1983).

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Griggio, P.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Marks, B. S.

Mecozzi, A.

Mégret, P.

M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).

Menyuk, C.

P. K. A. Wai and C. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Menyuk, C. R.

Palmieri, L.

Pizzinat, A.

Rose, A. H.

A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
[CrossRef]

Sirenko, A. A.

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

Wai, P. K. A.

P. K. A. Wai and C. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Wang, C. M.

A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
[CrossRef]

Wuilpart, M.

M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).

J. Lightwave Technol. (6)

P. K. A. Wai and C. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

A. Galtarossa and L. Palmieri, J. Lightwave Technol. 53, 86 (2004).

M. Wuilpart, C. Crunelle, and P. Mégret, J. Lightwave Technol. 269, 315 (2007).

L. Palmieri, J. Lightwave Technol. 24, 4075 (2006).
[CrossRef]

A. H. Rose, S. M. Etzel, and C. M. Wang, J. Lightwave Technol. 15, 803 (1997).
[CrossRef]

A. Pizzinat, L. Palmieri, B. S. Marks, C. R. Menyuk, and A. Galtarossa, J. Lightwave Technol. 21, 3355 (2003).
[CrossRef]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. USA (1)

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Other (2)

M. Brodsky, M. Boroditsky, M. Feuer, and A. A. Sirenko, in Proceedings of the European Commission on Optical Communication (ECOC, 2005), paper Th. 4.2.4.

C. W. Gardiner, Stochastic Methods for Physics, Chemistry and Natural Sciences (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

To generate the magnetic field, toroidal coils are wrapped onto the spool and connected to a current source. A polarization controller (PC) permits variation of input state of polarization.

Fig. 2
Fig. 2

Maps in the measurement plane for a 25-km-long constantly spun fiber with Z = 10 m . Each blue thick (red thin) curve shows the values of the rms DGD and the rms Faraday rotation angle achievable for the reported value of L C ( L B ) and for varying L B ( L C ) . Dotted lines are the plot of the asymptotic expressions for τ rms and θ rms Eqs. (19, 21). Dots are the results of Monte Carlo averages over 4000 realizations using the RMM.

Fig. 3
Fig. 3

Same as in Fig. 1 for the spin function A ( z ) = A 0 sin ( 2 π z Z ) + A 0 cos ( 4 π z Z ) with Z = 10 m and spin amplitude A 0 = 4.8 rad .

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d τ d z = β × τ + β ω ,
d θ d z = β × θ + 2 β F ,
d τ + d z = β + ( i τ 3 + 1 ω ) ,
d τ 3 d z = Im ( β τ + ) ,
d τ 2 d z = 2 ω Re ( β τ + ) ,
d θ + d z = i β + θ 3 ,
d θ 3 d z = Im ( β θ + ) + 2 β F ,
d θ 2 d z = 4 β F θ 3 .
β ± = exp [ ± 2 i A ( z ) ] β ± .
d β ± = ρ β ± d z + 2 ρ β 0 2 d W ± ,
d β ± = [ ρ ± 2 i A z ( z ) ] β ± d z + 2 ρ β 0 2 d W ± ,
d a m , n = m a m 1 , n d β + n a m , n 1 d β + + m n a m 1 , n 1 d β d β + ,
Q k = a k , k ω τ 3 ( k ! β 0 2 k ) ,
T k = a k , k + 1 ω τ + [ ( k + 1 ) ! β 0 2 k + 1 ] .
d Q k d z = 2 k ρ ( Q k Q k 1 ) + ( k + 1 ) β 0 Im ( T k ) + S θ ,
d T k d z = [ ρ + 2 i A z ( z ) ] T k 2 k ρ ( T k T k 1 ) i β 0 Q k + 1 + S τ ,
d τ 2 d z = 2 β 0 Re ( T 0 ) ω 2 ,
d θ 2 d z = 4 β F Q ̃ 0 .
τ rms = 4 ( 2 π L C L ) 1 2 ( ω L B ) .
Q ̃ 1 = ( 2 β F β 0 2 ) ( ρ + 4 A z 2 ρ ) .
θ rms β F L B { ( L 2 π L C ) [ 1 + ( 4 π L C Z ) 2 ] } 1 2 .

Metrics