Abstract

We observe experimentally, for the first time to our knowledge, the simultaneous emission of two strong conjugate resonant dispersive waves by optical solitons. The effect is observed in a small waveguiding glass feature within the cladding of a Kagome hollow-core photonic crystal fiber. We demonstrate theoretically that the phenomenon is attributed to the unusually high fourth-order dispersion coefficient of the waveguiding feature.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  3. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef] [PubMed]
  4. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
    [CrossRef] [PubMed]
  6. F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
    [CrossRef] [PubMed]
  7. F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  8. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, Opt. Express 12, 1045 (2004).
    [CrossRef] [PubMed]
  9. M. Frosz, P. Falk, and O. Bang, Opt. Express 13, 6181 (2005).
    [CrossRef] [PubMed]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

2001 (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

1986 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Andersen, T.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Bang, O.

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Chen, H. H.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Couny, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Falk, P.

Frosz, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Hansen, K.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hilligsøe, K. M.

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Keiding, S.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Kristiansen, R.

Larsen, J.

Lee, Y. C.

Light, P. S.

Menyuk, C. R.

Mølmer, K.

Nielsen, C.

Paulsen, H.

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Wai, P. K. A.

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Physical and linear optical properties of the waveguiding node. (A) Scanning electron microscopy of the HC-PCF. (B) Close-up of the node waveguide. (C) Near-field profile of transmitted light through the node. (D) Calculated GVD of the fundamental mode for both polarizations.

Fig. 2
Fig. 2

Output spectrum after propagation through the node of an 30 cm long HC-PCF with an input laser pulse in (A) polarization 1 and (B) polarization 2. The traces are recorded by a multichannel spectrometer for the visible region (left-hand side) and by an optical spectrum analyzer for the near-infrared range (right-hand side).

Fig. 3
Fig. 3

Nonlinear properties of the bridge. (A) Calculated wavelength dependence of the effective area (gray curve and left-hand side axis) and of the power fraction in air (black curve and right-hand side axis). Spectrum of β 3 and β 4 Δ ω 4 . (C) Numerical results showing the spectral evolution of a 100 fs pulse coupled into the node for different propagation lengths. (D) PM curve; the dashed lines indicate the zero-crossings of the PM curve, which coincide with the two distinctive spectral lines of the generated spectrum.

Fig. 4
Fig. 4

Spectral evolution of the RDWs with pump wavelength. The points are the experimental data and the solid curves are the theoretical results for BRDW (blue curve) and for RRDW (light curve). The dotted curve corresponds to the location of the pump soliton

Metrics