Abstract

We show how time warps caused by nonuniform wavelength-to-time mapping in the photonic time-stretch analog-to-digital converter (ADC) can be digitally measured and removed. This is combined with digital correction of wavelength-dependent Mach–Zehnder modulator (MZM) bias offset to attain a 10GHz bandwidth digitizer with >7 effective bits of resolution and 52dB spur-free dynamic range. To the best of our knowledge, this is the highest resolution ADC in 10GHz bandwidth range, with at least 1 order of magnitude higher signal-to-noise ratio than ever achieved. We also demonstrate concatenation of 30 wavelength interleaved time segments with high fidelity on the path to achieving continuous time operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and G. Raybon, 2007 Digest of the IEEE/LEOS Summer Topical Meetings (IEEE, 2007), pp. 7-8.
    [CrossRef]
  2. R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
    [CrossRef]
  3. A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
    [CrossRef]
  4. B. Jalali and F. Coppinger, 'Data conversion using time manipulation,' U.S. patent 6,288,659 (September 11, 2001).
  5. J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
    [CrossRef]
  6. G. C. Valley, Opt. Express 15, 1955 (2007).
    [CrossRef] [PubMed]
  7. Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
    [CrossRef]
  8. S. Gupta, G. C. Valley, and B. Jalali, J. Lightwave Technol. 25, 3716 (2007).
    [CrossRef]
  9. S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.
  10. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
    [CrossRef]
  11. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
    [CrossRef]

2007 (3)

2003 (1)

2002 (1)

S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
[CrossRef]

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

1999 (1)

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

1998 (2)

A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
[CrossRef]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Chou, J.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
[CrossRef]

B. Jalali and F. Coppinger, 'Data conversion using time manipulation,' U.S. patent 6,288,659 (September 11, 2001).

Dubovitsky, S.

S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

Galt, S.

S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.

Giles, C. R.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

Gupta, S.

S. Gupta, G. C. Valley, and B. Jalali, J. Lightwave Technol. 25, 3716 (2007).
[CrossRef]

S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.

Han, Y.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Jalali, B.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

S. Gupta, G. C. Valley, and B. Jalali, J. Lightwave Technol. 25, 3716 (2007).
[CrossRef]

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
[CrossRef]

S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
[CrossRef]

A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
[CrossRef]

B. Jalali and F. Coppinger, 'Data conversion using time manipulation,' U.S. patent 6,288,659 (September 11, 2001).

S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

O'Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Raybon, G.

P. J. Winzer and G. Raybon, 2007 Digest of the IEEE/LEOS Summer Topical Meetings (IEEE, 2007), pp. 7-8.
[CrossRef]

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Steier, W.

S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
[CrossRef]

Stigwall, J.

S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Valley, G. C.

Walden, R. H.

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Winzer, P. J.

P. J. Winzer and G. Raybon, 2007 Digest of the IEEE/LEOS Summer Topical Meetings (IEEE, 2007), pp. 7-8.
[CrossRef]

Yegnanarayanan, S.

S. Dubovitsky, W. Steier, S. Yegnanarayanan, and B. Jalali, J. Lightwave Technol. 20, 886 (2002).
[CrossRef]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Electron. Lett. (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, Electron. Lett. 34, 839 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 34, 1390 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, IEEE J. Sel. Areas Commun. 17, 539 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (4)

P. J. Winzer and G. Raybon, 2007 Digest of the IEEE/LEOS Summer Topical Meetings (IEEE, 2007), pp. 7-8.
[CrossRef]

B. Jalali and F. Coppinger, 'Data conversion using time manipulation,' U.S. patent 6,288,659 (September 11, 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

S. Gupta, B. Jalali, J. Stigwall, and S. Galt, 2007 IEEE International Topical Meeting on Microwave Photonics (IEEE, 2007), pp. 141-144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Solid trace shows an ideal signal without time warp; dashed trace is a signal with time warp; trace with squares represents the error; trace with circles represents amplitude of the time warp.

Fig. 2
Fig. 2

Time-warp magnitudes before and after correction along the time axis of two combined WDM channels.

Fig. 3
Fig. 3

Second-harmonic amplitude versus time/ wavelength.

Fig. 4
Fig. 4

Experimental setup of the system.

Fig. 5
Fig. 5

(a) Single-tone test with 4 GHz rf; (b) two-tone test with 8.2 and 10.25 GHz rf signals. In both, 30 waveforms are stitched coherently to achieve high-resolution bandwidth and show scalability to a continuous system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = x ( t ) δ ( t ) ( 2 x 2 ( t ) 1 ) .

Metrics