Abstract

We report efficient generation of tunable femtosecond pulses in the red by internal frequency doubling of an optical parametric oscillator (OPO) based on periodically poled LiNbO3 (PPLN). The OPO, based on a 1-mm-thick PPLN crystal, is synchronously pumped by a femtosecond Ti:sapphire laser at 810nm, providing signal pulses across 1.331.57μm at a 76MHz repetition rate. Using a 1-mm-thick crystal of BiB3O6 (BIBO) internal to the OPO cavity, we achieve frequency doubling of signal pulses across 665785nm with up to 260mW of average power for 1.51W of pump. The high nonlinear gain and phase-matching acceptance in PPLN and BIBO permit convenient tuning across the full range by simple detuning of OPO cavity delay. Intracavity dispersion compensation results in near-transform-limited red pulses with durations down to 140fs for 185fs input pump pulses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
    [CrossRef] [PubMed]
  2. T. J. Driscoll, G. M. Gale, and F. Hache, Opt. Commun. 110, 638 (1994).
    [CrossRef]
  3. M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Lett. 31, 3128 (2006).
    [CrossRef] [PubMed]
  4. F. Ruebel, P. Haag, and J. A. L'huillier, Appl. Phys. Lett. 92, 011122 (2008).
    [CrossRef]
  5. J. Seres and J. Hebling, J. Opt. Soc. Am. B 17, 741 (2000).
    [CrossRef]
  6. M. Ghotbi and M. Ebrahim-Zadeh, Opt. Express 12, 6002 (2004).
    [CrossRef] [PubMed]
  7. M. Ghotbi and M. Ebrahim-Zadeh, Opt. Lett. 30, 3395 (2005).
    [CrossRef]

2008 (1)

F. Ruebel, P. Haag, and J. A. L'huillier, Appl. Phys. Lett. 92, 011122 (2008).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

2000 (1)

1994 (1)

T. J. Driscoll, G. M. Gale, and F. Hache, Opt. Commun. 110, 638 (1994).
[CrossRef]

1993 (1)

Driscoll, T. J.

T. J. Driscoll, G. M. Gale, and F. Hache, Opt. Commun. 110, 638 (1994).
[CrossRef]

Ebrahim-Zadeh, M.

Ellingson, R. J.

Esteban-Martin, A.

Gale, G. M.

T. J. Driscoll, G. M. Gale, and F. Hache, Opt. Commun. 110, 638 (1994).
[CrossRef]

Ghotbi, M.

Haag, P.

F. Ruebel, P. Haag, and J. A. L'huillier, Appl. Phys. Lett. 92, 011122 (2008).
[CrossRef]

Hache, F.

T. J. Driscoll, G. M. Gale, and F. Hache, Opt. Commun. 110, 638 (1994).
[CrossRef]

Hebling, J.

L'huillier, J. A.

F. Ruebel, P. Haag, and J. A. L'huillier, Appl. Phys. Lett. 92, 011122 (2008).
[CrossRef]

Ruebel, F.

F. Ruebel, P. Haag, and J. A. L'huillier, Appl. Phys. Lett. 92, 011122 (2008).
[CrossRef]

Seres, J.

Tang, C. L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the internally frequency doubled PPLN femtosecond OPO for the generation of red pulses.

Fig. 2
Fig. 2

(a) Cavity length detuning versus second-harmonic red wavelength. (b) Typical spectra of generated red pulses across the tuning range.

Fig. 3
Fig. 3

Variation of the generated second-harmonic average power and conversion efficiency at 670 nm versus pump power at 810 nm .

Fig. 4
Fig. 4

Intensity autocorrelation traces of the generated red pulses across the tuning range.

Fig. 5
Fig. 5

Intensity autocorrelation trace and spectrum (inset) of the red pulses at 730 nm . The time duration of 146 fs and the spectral bandwidth of 3.8 nm result in near-transform-limit pulses with a time-bandwidth product of Δ ν . Δ τ 0.31 ( sech 2 pulse shape).

Metrics