Abstract

In this work we present a systematic approach to increase the low-loss guiding bandwidth of PCWs by reducing the interaction of low-group-velocity modes with the surrounding photonic crystal. By this method the low-loss bandwidth of a W1 PCW is increased from 2.5nmto12nm. We also present a detailed analysis of the transmission properties of W1 PCWs and elaborate on the coupling to TM-like guided modes present in the low-loss transmission bandwidth of this device.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.Pavesi and D.J.Lockwood, eds., Silicon Photonics (Springer, 2004).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  3. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, J. Lightwave Technol. 22, 2787 (2004).
    [CrossRef]
  4. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
    [CrossRef]
  5. W. T. Lau and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
    [CrossRef]
  6. A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
    [CrossRef]
  7. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, Opt. Express 14, 2413 (2006).
    [CrossRef] [PubMed]
  8. M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 4694 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2004 (2)

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, J. Lightwave Technol. 22, 2787 (2004).
[CrossRef]

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

2002 (2)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

W. T. Lau and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

1987 (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Adibi, A.

Asano, T.

Askari, M.

Chow, E.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Fan, S.

W. T. Lau and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

Girolami, G.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Grot, A.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Hatsuta, R.

Huang, J.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, Opt. Express 14, 2413 (2006).
[CrossRef] [PubMed]

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Jafarpour, A.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Lau, W. T.

W. T. Lau and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

Lee, R. K.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Mirkarimi, L. W.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Mohammadi, S.

Momeni, B.

Noda, S.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Rakhshandehroo, M.

Reinke, C. M.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Soltani, M.

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Tanaka, Y.

Xu, Y.

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Yegnanarayanan, S.

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Appl. Phys. B (1)

A. Jafarpour, E. Chow, C. M. Reinke, J. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, Appl. Phys. B 79, 409 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

W. T. Lau and S. Fan, Appl. Phys. Lett. 81, 3915 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Phys. Rev. Lett. (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Other (1)

L.Pavesi and D.J.Lockwood, eds., Silicon Photonics (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structure of a W1 PCW in the plane of a PC; the lattice constant is a, the radius of holes in the second row surrounding the guiding region is r 2 , and the radius of the other holes is r 1 . (b) Dispersion diagrams of W1 PCWs with r = 0.3 a . Circle, square, and diamond markers represent the PCW with the normalized radius of the second layer holes r 2 = 0.3 a , r 2 = 0.25 a , and r 2 = 0.2 a , respectively. Insets E 1 and E 2 show the profile of the H z field of the W1 PCW with r 2 = 0.3 a at normalized propagation constants ( β a 2 π ) of 0.25 and 0.5, respectively.

Fig. 2
Fig. 2

Transmission spectra of PCWs on a SOI with r 2 = 120 nm , r 2 = 100 nm , and r 2 = 80 nm shown by dotted, dashed, and solid curves, respectively. The inset shows the scanning electron micrograph of the fabricated device at the interface of the input ridge to the PCW.

Fig. 3
Fig. 3

(a) Dispersion diagram of a W1 PCW on a SOI with a = 400 nm , r 1 = 120 nm , and r 2 = 80 nm . Solid and dotted curves are dispersion curves of guided modes with even and odd symmetries (within the plane of the PC), respectively. (b) Transmission spectrum of the PCW described in (a).

Fig. 4
Fig. 4

Dispersion diagram of the PCW under study as r 2 is reduced from 0.3 a to 0.2 a .

Metrics