Abstract

We describe a transmission dark-field digital holographic microscope based on a Mach–Zehnder configuration for the detection of nanosize objects or objects smaller than the optical resolution limit. An optical stop adequately placed in the object beam removes the nondiffracted beam while keeping the light scattered by the object. This configuration combines an improved detection of objects smaller than the optical resolution with the refocusing capability yielded by digital holography. A theoretical analysis and an experimental demonstration are provided.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High throughput holographic imaging-in-flow for the analysis of a wide plankton size range

Catherine Yourassowsky and Frank Dubois
Opt. Express 22(6) 6661-6673 (2014)

Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis

Frank Dubois, Natacha Callens, Catherine Yourassowsky, Mauricio Hoyos, Pascal Kurowski, and Olivier Monnom
Appl. Opt. 45(5) 864-871 (2006)

Refocus criterion for both phase and amplitude objects in digital holographic microscopy

Frank Dubois, Ahmed El Mallahi, Jérôme Dohet-Eraly, and Catherine Yourassowsky
Opt. Lett. 39(15) 4286-4289 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription