Abstract

We demonstrate experimentally the pulse-to-pulse coherence of the beat note produced by a dual-polarization passively Q-switched Nd:YAG laser subjected to a frequency-shifted, polarization-rotated, optical feedback. The reinjection of one laser eigenstate into the other eigenstate ensures the phase-locking of the beat note against an external acoustic reference wave at the onset of each pulse, circumventing the intrinsic memory loss of the optical phase between successive pulses. It opens the possibility to generate optically a coherent pulsed beat note in the radio-frequency range with a subhertz linewidth, i.e., over thousands of pulses. An application to lidar radar is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).
  2. F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
    [CrossRef]
  3. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, Appl. Opt. 41, 5702 (2002).
    [CrossRef] [PubMed]
  4. T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
    [CrossRef]
  5. D. C. Kao, T. J. Kane, and L. J. Mullen, Opt. Lett. 29, 1203 (2004).
    [CrossRef] [PubMed]
  6. Y. Fujii and M. Katsuragawa, Opt. Lett. 32, 3065 (2007).
    [CrossRef] [PubMed]
  7. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
    [CrossRef]
  8. N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, Opt. Lett. 28, 328 (2003).
    [CrossRef] [PubMed]
  9. L. Kervevan, H. Gilles, S. Girard, and M. Laroche, Opt. Lett. 32, 1099 (2007).
    [CrossRef] [PubMed]
  10. A. Le Floch and G. Stephan, C. R. Seances Acad. Sci., Ser. B 277, 265 (1973).
  11. N. D. Lai, F. Bretenaker, and M. Brunel, J. Lightwave Technol. 21, 3037 (2003).
    [CrossRef]
  12. R. Diaz, S.-C. Chan, and J.-M. Liu, Opt. Lett. 31, 3600 (2006).
    [CrossRef] [PubMed]
  13. R. Stolte and R. Ulrich, Electron. Lett. 33, 1217 (1997).
    [CrossRef]
  14. C. D. Brooks and F. Di Teodoro, Opt. Express 13, 8999 (2005).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

2002

2001

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

1999

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

1997

R. Stolte and R. Ulrich, Electron. Lett. 33, 1217 (1997).
[CrossRef]

1996

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

1995

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

1973

A. Le Floch and G. Stephan, C. R. Seances Acad. Sci., Ser. B 277, 265 (1973).

Bretenaker, F.

Brooks, C. D.

Brunel, M.

Cariou, J.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Chan, S.-C.

Contarino, V. M.

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

Di Teodoro, F.

Diaz, R.

Dolfi, D.

Emile, O.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Ferrand, B.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, Opt. Lett. 28, 328 (2003).
[CrossRef] [PubMed]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Fujii, Y.

Fulbert, L.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, Opt. Lett. 28, 328 (2003).
[CrossRef] [PubMed]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Gilles, H.

Girard, S.

Guern, Y.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Herczfeld, P. R.

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

Huignard, J.-P.

Kane, T. J.

Kao, D. C.

Katsuragawa, M.

Kervevan, L.

Lai, N. D.

Laroche, M.

Le Floch, A.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, Appl. Opt. 41, 5702 (2002).
[CrossRef] [PubMed]

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

A. Le Floch and G. Stephan, C. R. Seances Acad. Sci., Ser. B 277, 265 (1973).

Liu, J.-M.

Lotrian, J.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Marty, J.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Molva, E.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Morvan, L.

Mullen, L. J.

D. C. Kao, T. J. Kane, and L. J. Mullen, Opt. Lett. 29, 1203 (2004).
[CrossRef] [PubMed]

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

Olivard, P.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Pellen, F.

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Raymond, T. D.

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

Smith, A. V.

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

Stephan, G.

A. Le Floch and G. Stephan, C. R. Seances Acad. Sci., Ser. B 277, 265 (1973).

Stolte, R.

R. Stolte and R. Ulrich, Electron. Lett. 33, 1217 (1997).
[CrossRef]

Ulrich, R.

R. Stolte and R. Ulrich, Electron. Lett. 33, 1217 (1997).
[CrossRef]

Vallet, M.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Appl. Opt.

C. R. Seances Acad. Sci., Ser. B

A. Le Floch and G. Stephan, C. R. Seances Acad. Sci., Ser. B 277, 265 (1973).

Electron. Lett.

R. Stolte and R. Ulrich, Electron. Lett. 33, 1217 (1997).
[CrossRef]

IEEE J. Quantum Electron.

T. D. Raymond and A. V. Smith, IEEE J. Quantum Electron. 31, 1734 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

L. J. Mullen, P. R. Herczfeld, and V. M. Contarino, IEEE Trans. Microwave Theory Tech. 44, 2703 (1996).

J. Lightwave Technol.

J. Phys. D

F. Pellen, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, J. Phys. D 34, 1122 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, Phys. Rev. A 60, 4052 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. P, diode pumping; M 1 , 2 , laser cavity mirrors; G, Nd:YAG active medium; SA, Cr:YAG saturable absorber; QWPs, quarter-wave plates; AO, acousto-optic frequency shifter; PRF, polarization rotating feedback, including a quarter-wave plate and a mirror.

Fig. 2
Fig. 2

Output pulse train power versus time. (a) 3 ms and (b) 200 ns time windows. The pulse repetition frequency is f rep = 1 T = 10.0 kHz . The beat note observed in (b), here at Δ ν = 185 MHz , is tunable by rotation of the QWPs axes.

Fig. 3
Fig. 3

Spectral analysis of the output pulse train power with decreasing frequency spans. (a) Span 500 MHz resolution bandwidth (RBW) 30 kHz , (b) free-running, and (c) locked beat notes with span 100 kHz , RBW 300 Hz , and averaging ten times; dashed line indicates the spectrum analyzer noise floor ( 114 dBm ) . (d) Span 100 Hz , RBW 1 Hz .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = [ G ( t ) n δ ( t n T ) ] × cos ( 2 π Δ ν t + φ ( t ) ) ,
S I ( f ) = [ G ̂ ( f ) × n δ ( f n f rep ) ] S φ ( f Δ ν ) ,

Metrics