Abstract

We present the dispersion and Raman amplification characteristics of As2Se3 photonic crystal fibers (PCFs). We compare the gain characteristics with conventional As2Se3 fibers and find that the Raman gain efficiency in PCFs can be improved by a factor of more than 4. This allows us to either use a small length of the fiber or to use the low pump power to attain similar gain characteristics. Numerical simulations reveal that a peak gain of 10dB can be achieved in a 1.1m long PCF when it is pumped at 1.5μm in wavelength with an input power of 500mW.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).
  2. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
    [CrossRef] [PubMed]
  3. P. A. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, Opt. Express 11, 3248 (2003).
    [CrossRef] [PubMed]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  5. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003).
    [CrossRef]
  6. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
    [CrossRef]
  7. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, Opt. Express 14, 1280 (2006).
    [CrossRef] [PubMed]
  8. L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.
  9. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, and N. Traynor, Opt. Express 16, 9398 (2008).
    [CrossRef] [PubMed]
  10. M. Fuochi, F. Poli, A. Cucinotta, and L. Vincetti, J. Lightwave Technol. 21, 2247 (2003).
    [CrossRef]
  11. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, Opt. Express 13, 9516 (2005).
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
    [CrossRef]
  13. G. Renversez, F. Bordas, and B. T. Kuhlmey, Opt. Lett. 30, 1264 (2005).
    [CrossRef] [PubMed]
  14. http://cvdmaterials.se/chalogenide-glasses.htm.

2008 (1)

2006 (2)

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, Opt. Express 14, 1280 (2006).
[CrossRef] [PubMed]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

2005 (3)

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

G. Renversez, F. Bordas, and B. T. Kuhlmey, Opt. Lett. 30, 1264 (2005).
[CrossRef] [PubMed]

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, Opt. Express 13, 9516 (2005).
[CrossRef] [PubMed]

2003 (4)

2002 (1)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

1997 (1)

Aggarwal, I.

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Bjarklev, A.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003).
[CrossRef]

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003).
[CrossRef]

Bordas, F.

Brilland, L.

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Broeng, J.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003).
[CrossRef]

Chartier, T.

Cucinotta, A.

Desevedavy, F.

Fatome, J.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

Fortier, C.

Fujisawa, T.

Fuochi, M.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Houizot, P.

Knight, J. C.

Koshiba, M.

Kuhlmey, B. T.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

Kung, F. H.

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

Millot, G.

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Monteville, A.

Nguyen, T.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
[CrossRef] [PubMed]

Pitois, S.

Poli, F.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

Pureza, P. C.

Renversez, G.

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
[CrossRef] [PubMed]

Shaw, L.

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
[CrossRef] [PubMed]

Smektala, F.

Thielen, P. A.

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 28, 1406 (2003).
[CrossRef] [PubMed]

P. A. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, Opt. Express 11, 3248 (2003).
[CrossRef] [PubMed]

Traynor, N.

Troles, J.

Varshney, S. K.

Vincetti, L.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, J. Optoelectron. Adv. Mater. 8, 2148 (2006).

Opt. Express (4)

Opt. Lett. (3)

Other (3)

http://cvdmaterials.se/chalogenide-glasses.htm.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003).
[CrossRef]

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion characteristics of As–Se PCFs with d Λ = 0.43 for Λ = 2 μ m (solid curve) and Λ = 4 μ m (dashed curve).

Fig. 2
Fig. 2

RGE for As–Se PCFs with d Λ = 0.43 for Λ = 2 μ m (solid curve), Λ = 4 μ m (dotted curve), and conventional As–Se fiber (dashed curve) when the fiber is pumped at 1.5 μ m . The PCF with a small pitch constant has the highest RGE, more than four times than the RGE of a conventional As–Se fiber.

Fig. 3
Fig. 3

Raman gain characteristics of 1.1 - m -long As–Se conventional fibers and PCFs when they are pumped at an input pump power of 500 mW . A peak gain of 10 dB can be obtained in a PCF with a small pitch constant. As the pitch constant is doubled (dotted curve), the gain falls below 3 dB . In the case of a conventional As–Se fiber (dashed curve), the gain reaches a maximum of 1.6 dB , justifying the use of PCFs, where a large gain can be attained in the same lengths of the fibers.

Fig. 4
Fig. 4

Impact of fiber attenuation on the Raman gain of As–Se PCFs. It can be seen that the peak gain decreases from 10 to 2 dB when the attenuation increases from 0.7 to 4.8 dB m .

Fig. 5
Fig. 5

Trade-off between the Raman gain, fiber length, input pump power, and fiber attenuation of the As–Se PCF ( d Λ = 0.43 and Λ = 2 μ m ).

Metrics