Abstract

Switching light is one of the most fundamental functions of an optical circuit. As such, optical switches are a major research topic in photonics, and many types of switches have been realized. Most optical switches operate by imposing a phase shift between two sections of the device to direct light from one port to another, or to switch it on and off, the major constraint being that typical refractive index changes are very small. Conventional solutions address this issue by making long devices, thus increasing the footprint, or by using resonant enhancement, thus reducing the bandwidth. We present a slow-light-enhanced optical switch that is 36 times shorter than a conventional device for the same refractive index change and has a switching length of 5.2μm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. S. El-Bawab, Optical Switching (Springer, 2006).
    [CrossRef]
  2. T. F. Krauss, J. Phys. D 40, 2666 (2007).
    [CrossRef]
  3. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, Opt. Express 15, 219 (2007).
    [CrossRef] [PubMed]
  4. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  5. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
    [CrossRef]
  6. N. Yamamoto, T. Ogawa, and K. Komori, Opt. Express 14, 1223 (2006).
    [CrossRef] [PubMed]
  7. Y. A. Vlasov and S. J. McNab, Opt. Lett. 31, 50 (2006).
    [CrossRef] [PubMed]
  8. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, Opt. Lett. 32, 2638 (2007).
    [CrossRef] [PubMed]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2000).
    [CrossRef]
  10. L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, Electron. Lett. 42, 1454 (2006).
    [CrossRef]
  11. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, Phys. Rev. B 49, 7408 (1994).
    [CrossRef]
  12. D. Mori and T. Baba, Opt. Express 13, 9398 (2005).
    [CrossRef] [PubMed]
  13. Yu. Petrov and M. Eich, IEEE J. Sel. Areas Commun. 23, 1396 (2006).
    [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, Opt. Express 13, 2678 (2005).
    [CrossRef] [PubMed]

2007 (4)

2006 (4)

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, Electron. Lett. 42, 1454 (2006).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, Opt. Express 14, 1223 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, Opt. Lett. 31, 50 (2006).
[CrossRef] [PubMed]

Yu. Petrov and M. Eich, IEEE J. Sel. Areas Commun. 23, 1396 (2006).
[CrossRef]

2005 (3)

2000 (1)

1994 (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, Phys. Rev. B 49, 7408 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Electron. Lett. (1)

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, Electron. Lett. 42, 1454 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

Yu. Petrov and M. Eich, IEEE J. Sel. Areas Commun. 23, 1396 (2006).
[CrossRef]

J. Phys. D (1)

T. F. Krauss, J. Phys. D 40, 2666 (2007).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, Phys. Rev. B 49, 7408 (1994).
[CrossRef]

Other (1)

T. S. El-Bawab, Optical Switching (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron micrographs of the directional coupler switch. Top, the coupler consists of two photonic crystal waveguides made up of three regions: the central directional coupler region of length 12 a and input and output regions each of length 4 a . Bottom left, overview of the structures: s-bends are used to prevent interactions between the access waveguides and provide sufficient spatial separation at the facets to observe each output port. Bottom right: detail of the three hole sizes used to engineer the dispersion of the photonic crystal waveguides.

Fig. 2
Fig. 2

Dispersion curves of the upper (solid black) and lower (dashed) modes of the central section of the device (bottom axis). The corresponding coupling length is shown as a gray curve (top axis). The dotted lines indicate the frequency at which cross-coupling occurs in the switch of length 12 a .

Fig. 3
Fig. 3

Spectral response of the device at (a) 23 ° C and (b) 45 ° C . (a) and (b) show the measured transmission spectra of light from the bar port (dashed black curve) and the cross-port (solid black curve). Also shown are numerical results calculated using a three-dimensional finite-difference time-domain method (gray squares and curves). The measured extinction ratio is also shown (top) for 23 ° C (solid line) and 45 ° C (dashed line). The vertical gray line indicates the operating wavelength of the switch.

Fig. 4
Fig. 4

Transmission through the bar port (open squares) and cross-port (closed squares) as a function of temperature. The corresponding refractive index of silicon is shown on the top axis. The left and right insets show images of the end facet for the bar and cross-output states, respectively.

Metrics