Abstract

We present developments using photoaligned liquid crystal polymers for creating vortex retarders, half-wave retarders with a continuously variable fast axis. Polarization properties of components designed to create different polarization vortex modes are presented. We assess the viability of these components by using the theoretical and experimental point spread functions in Mueller matrix format, or a point spread matrix (PSM). The measured PSM of these components in an optical system is very close to the theoretically predicted values, thus showing that these components should provide excellent performance in applications utilizing polarized optical vortices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  2. X. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).
    [CrossRef] [PubMed]
  3. A. Niv, G. Biener, V. Kleiner, and E. Hasmin, Opt. Lett. 29, 238 (2004).
    [CrossRef] [PubMed]
  4. D. McGloin and K. Dholakia, OE Mag. January, 2003, pp. 42-45.
  5. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  6. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  7. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007).
    [CrossRef] [PubMed]
  8. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, Jpn. J. Appl. Phys., Part 1 34, L764 (1995).
    [CrossRef]
  9. J. P. McGuire, Jr., and R. A. Chipman, J. Opt. Soc. Am. A 7, 1614 (1990).
    [CrossRef]
  10. J. L. Pezzaniti and R. A. Chipman, Opt. Eng. 34, 155 (1995).

2007

2004

2003

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

1996

1995

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, Jpn. J. Appl. Phys., Part 1 34, L764 (1995).
[CrossRef]

J. L. Pezzaniti and R. A. Chipman, Opt. Eng. 34, 155 (1995).

1990

Appl. Opt.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys., Part 1

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, Jpn. J. Appl. Phys., Part 1 34, L764 (1995).
[CrossRef]

Opt. Eng.

J. L. Pezzaniti and R. A. Chipman, Opt. Eng. 34, 155 (1995).

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Other

D. McGloin and K. Dholakia, OE Mag. January, 2003, pp. 42-45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Vortex retarders of m = 1 , 2, 3 analyzed through a linear polarizer.

Fig. 2
Fig. 2

Retardance (left) and fast axis (right) for (a) the m = 1 component, (b) the m = 2 component, and (c) the m = 3 component. In all cases the retardance is measured in degrees at λ = 570 , and the fast axis is in degrees.

Fig. 3
Fig. 3

(a)–(c) Calculated PSM and (d)–(f) Measured PSM for the m = 1 , 2, 3 vortex retarders.

Fig. 4
Fig. 4

(a) Irradiance of the (a) m = 1 , (d) m = 2 , and (g) m = 3 vortex retarder measured intensity; (b), (e), (h), corresponding HLP input and HLP analyzer; (c), (f), (i) with HLP input and VLP analyzer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J [ φ ] = ( cos ( m φ ) sin ( m φ ) sin ( m φ ) cos ( m φ ) ) ,
θ = α φ + δ ,
P = h h * ,
P s = S P S 1

Metrics