Abstract

A circular plasmon current in a silver nanoring is demonstrated and investigated with electrodynamics theory. The circular current is driven by the incident plane electromagnetic wave. For a silver ring with a thickness of 50โ€‰nm and inner and outer diameters of 200 and 300โ€‰nm, the circular current can be obtained when the incident wavelength is at 650โ€‰nm, which is about twice the diameter of the ring. The circular current can be observed only when the incident wave and the polarization directions are both parallel to the ring plane. The resonance wavelength shifts to red with the expansion of the ring diameter and the drop in the ring thickness. The discovery holds promise for the design of artificial materials with negative refractive index in the visible wavelengths and might stimulate new ideas for the development of nanoelectronic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription