Abstract

A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial–spectral information within an object. We demonstrate this imaging system’s ability to obtain multiple depth-resolved fluorescence images simultaneously.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. A. R. Rouse and A. F. Gmitro, Opt. Lett. 25, 1708 (2000).
    [CrossRef]
  3. J. E. Jureller, H. Y. Kim, and N. F. Scherer, Opt. Express 14, 3406 (2006).
    [CrossRef] [PubMed]
  4. H. Cang, C. Shan Xu, D. Montiel, and H. Yang, Opt. Lett. 32, 2729 (2007).
    [CrossRef] [PubMed]
  5. J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).
  6. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).
  7. H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).
  8. K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
    [CrossRef]
  9. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Opt. Lett. 33, 566 (2008).
    [CrossRef] [PubMed]
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

2008 (1)

2007 (1)

2006 (1)

2003 (1)

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

2000 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Barbastathis, G.

Barton, J. K.

Cang, H.

Coufal, H.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Gelsinger, P. J.

Gmitro, A. F.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

Hesselink, L.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Hsiao, Y.-N.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Jureller, J. E.

Kim, H. Y.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kostuk, R. K.

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Luo, Y.

Montiel, D.

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).

Psaltis, D.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Rouse, A. R.

Scherer, N. F.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Xu, C. Shan

Yang, H.

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Opt. Eng. (Bellingham) (1)

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (3)

J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Construction setup of multiplexed gratings by using spherical and planar waves. M1 is the objective lens translated from a fixed objective lens M2. The angle of the reference beam is changed by Δ θ between each exposure to record a hologram.

Fig. 2
Fig. 2

Experimental imaging setup. L1 is the objective lens and L2 is the collector lens.

Fig. 3
Fig. 3

(a) Bragg circle diagram for K-vector closure. (b) Geometry for analysis of a holographic grating.

Fig. 4
Fig. 4

Fluorescence images of mouse fat stained with acridine orange. The figure was obtained with the VHIS system using a two grating hologram with an 8° angle between the reference beams. Two simultaneous depth-resolved images are projected and the depth separation is 65 μ m .

Fig. 5
Fig. 5

Image enhancement with background subtraction applied simultaneously to two depth-resolved images in Fig. 4.

Fig. 6
Fig. 6

Fluorescence images of mouse colon stained with acridine orange, obtained with the VHIS system. Image enhancement with background subtraction has been applied. Colonic crypts ( 20 μ m cross section) can be visualized.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k i , 1 k d , 1 = k i , 2 k d , 2 = K ,
k i , 1 = k d , 1 = 2 π n λ , k i , 2 = k d , 2 = 2 π n λ + d λ ,
θ λ = K 4 π n sin ( α θ ) ,

Metrics