Abstract

We have developed a multilevel interference lithography process to fabricate 50nm period gratings using light with a 351.1nm wavelength. In this process multiple grating levels patterned by interference lithography are overlaid and spatial–phase aligned to a common reference grating using interferometry. Each grating level is patterned with offset phase shifts and etched into a single layer to achieve spatial-frequency multiplication. The effect of the multilayer periodic structure on interference lithography is examined to optimize the fabrication process. This process presents a general scheme for overlaying periodic structures and can be used to fabricate more complex periodic structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Kowalski, R. K. Heilmann, M. L. Schattenburg, C.-H. Chang, F. B. Berendse, and W. R. Hunter, Appl. Opt. 45, 1676 (2006).
    [CrossRef] [PubMed]
  2. J. F. Seely, L. I. Goray, B. Kjornrattanawanich, J. M. Laming, G. E. Holland, K. A. Flanagan, R. K. Heilmann, C.-H. Chang, M. L. Schattenburg, and A. P. Rasmussen, Appl. Opt. 45, 1680 (2006).
    [CrossRef] [PubMed]
  3. D. Hambach, G. Schneider, and E. M. Gullikson, Opt. Lett. 26, 1200 (2001).
    [CrossRef]
  4. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
    [CrossRef]
  5. D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
    [CrossRef] [PubMed]
  6. J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
    [CrossRef]
  7. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, Opt. Express 14, 6434 (2006).
    [CrossRef] [PubMed]
  8. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
    [CrossRef]
  9. Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
    [CrossRef]
  10. B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
    [CrossRef]
  11. S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
    [CrossRef]
  12. M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
    [CrossRef]
  13. R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
    [CrossRef]
  14. Y. Zhao, C.-H. Chang, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2439 (2007).
    [CrossRef]
  15. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  17. W. Lee and F. L. Degertekin, J. Lightwave Technol. 22, 2359 (2004).
    [CrossRef]

2007

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Y. Zhao, C.-H. Chang, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2439 (2007).
[CrossRef]

2006

2005

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

2004

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

W. Lee and F. L. Degertekin, J. Lightwave Technol. 22, 2359 (2004).
[CrossRef]

2003

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

2002

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

2001

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

D. Hambach, G. Schneider, and E. M. Gullikson, Opt. Lett. 26, 1200 (2001).
[CrossRef]

1999

Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

1995

1988

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Berendse, F. B.

Bloomstein, T. M.

Brueck, S. R. J.

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Chang, C.-H.

Chen, C.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

Chen, C. G.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

Chen, L.

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

Cheng, J. Y.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

Chou, S. Y.

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

Cui, B.

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

David, C.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Degertekin, F. L.

Deneault, S.

Everett, P. N.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

Ferrera, J.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

Flanagan, K. A.

Gaylord, T. K.

Ge, H.

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Golovkina, V.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Goray, L. I.

Grann, E. B.

Gullikson, E. M.

Hambach, D.

Hane, K.

Hardy, D. E.

Heilmann, R. K.

Holland, G. E.

Hunter, W. R.

Kanamori, Y.

Keith, D. W.

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Kim, S. O.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Kjornrattanawanich, B.

Konkola, P.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

Konkola, P. T.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

Kowalski, M. P.

Laming, J. M.

Lee, W.

Marchant, M. F.

Moharam, M. G.

Nealey, P. F.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Pommet, D. A.

Pritchard, D. E.

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Rasmussen, A. P.

Ross, C. A.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

Rothschild, M.

Sasaki, M.

Schattenburg, M. L.

Y. Zhao, C.-H. Chang, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2439 (2007).
[CrossRef]

J. F. Seely, L. I. Goray, B. Kjornrattanawanich, J. M. Laming, G. E. Holland, K. A. Flanagan, R. K. Heilmann, C.-H. Chang, M. L. Schattenburg, and A. P. Rasmussen, Appl. Opt. 45, 1680 (2006).
[CrossRef] [PubMed]

M. P. Kowalski, R. K. Heilmann, M. L. Schattenburg, C.-H. Chang, F. B. Berendse, and W. R. Hunter, Appl. Opt. 45, 1676 (2006).
[CrossRef] [PubMed]

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Schneider, G.

Seely, J. F.

Smith, H. I.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Thomas, E. L.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

Vancso, G. J.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

Wu, W.

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

Yu, Z.

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

Zhao, Y.

Y. Zhao, C.-H. Chang, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2439 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett. 81, 3657 (2002).
[CrossRef]

B. Cui, Z. Yu, H. Ge, and S. Y. Chou, Appl. Phys. Lett. 90, 043118 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

Y. Zhao, C.-H. Chang, R. K. Heilmann, and M. L. Schattenburg, J. Vac. Sci. Technol. B 25, 2439 (2007).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2692 (1999).
[CrossRef]

Z. Yu, W. Wu, L. Chen, and S. Y. Chou, J. Vac. Sci. Technol. B 19, 2816 (2001).
[CrossRef]

Microelectron. Eng.

H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, Microelectron. Eng. 67-68, 56 (2003).
[CrossRef]

Nanotechnology

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988).
[CrossRef] [PubMed]

Proc. IEEE

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process diagram for multilevel interference lithography. (a) A reference grating is patterned in the outer substrate region, while the center region is spincoated with ARC and photoresist. (b) After aligning to the reference grating, the first grating level with period p = 200 nm is patterned. (c) The pattern is transfered into nitride. (d) After spincoating ARC and photoresist, (e) the second grating level is exposed at an additional π phase-offset. (f) The grating is pattern transfered, resulting in a nitride grating with a period of p 2 = 100 nm .

Fig. 2
Fig. 2

Simulated intensity efficiencies of the reflected orders at the photoresist–ARC interface with varying ARC thickness for the four exposure conditions. (b) The corresponding exposure conditions, each with 220 nm of photoresist, thickness t of ARC, and 45 nm of homogenous–periodic silicon nitride on top of silicon.

Fig. 3
Fig. 3

100 nm period grating fabricated by overlaying two 200 nm period grating levels.

Fig. 4
Fig. 4

Grating pattern fabricated by overlaying three 200 nm period grating levels.

Fig. 5
Fig. 5

50 nm period grating fabricated by overlaying four 200 nm period grating levels.

Metrics