Abstract

A general model of excitation and fluorescence recapturing by the forward and backward modes of filled microstructured optical fibers (MOFs) is presented. We also present experimental results for both backward and forward fluorescence recapturing within a MOF as a function of fiber length and demonstrate a good qualitative agreement between the numerical model and experimental results. We demonstrate higher efficiency of fluorescence recapturing into backward modes in comparison with that of forward modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Afshar V., S. C. W. Smith, and T. M. Monro, Opt. Express 15, 17891 (2007).
    [CrossRef]
  2. M. Nagel, A. Marchewka, and H. Kurz, Opt. Express 14, 9944 (2006).
    [CrossRef] [PubMed]
  3. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
    [CrossRef]
  4. R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
    [CrossRef]
  5. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffman, and T. M. Monro, Opt. Express 15, 17819 (2007).
    [CrossRef] [PubMed]
  6. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).
  7. D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
    [CrossRef]
  8. http://probes.invitrogen.com/products/qdot/.

2007 (3)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffman, and T. M. Monro, Opt. Express 15, 17819 (2007).
[CrossRef] [PubMed]

S. Afshar V., S. C. W. Smith, and T. M. Monro, Opt. Express 15, 17891 (2007).
[CrossRef]

2006 (1)

2004 (1)

R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
[CrossRef]

1988 (1)

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

Afshar V., S.

Bailey, R. E.

R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
[CrossRef]

Benabid, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Cordeiro, C. M. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Couny, F.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Cruz, C. H. B.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Ebendorff-Heidepriem, H.

Fragnito, H. L.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Hoffman, P.

Knight, J. C.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Kurz, H.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).

Maier, S. A.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Marchewka, A.

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

Monro, T. M.

Nagel, M.

Nie, S.

R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
[CrossRef]

Ruan, Y.

Schartner, E. P.

Smith, A. M.

R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
[CrossRef]

Smith, S. C. W.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).

Wiederhecker, G. S.

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

Nat. Photonics (1)

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, Nat. Photonics 1, 115 (2007).
[CrossRef]

Opt. Express (3)

Physica E (Amsterdam) (1)

R. E. Bailey, A. M. Smith, and S. Nie, Physica E (Amsterdam) 25, 1 (2004).
[CrossRef]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).

http://probes.invitrogen.com/products/qdot/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a filled MOF showing (a) the parameters used in modeling and (b) the SEM image of the cross section of the MOF used for the modeling and experiment. (c) Effective area of the fundamental mode for the geometry shown in (b) when the holes are filled with Rhodamine B in an isopropanol solution. The wavelength is 590 nm , the refractive index of isopropanol is 1.3774, and the different substrate glasses are marked.

Fig. 2
Fig. 2

Numerical results of the fluorescence capture fraction for forward ( Φ F , solid curves) and backward ( Φ B , dashed curves) directions as a function of (a) fiber length and (b) core diameter for different substrate glasses. Other parameters are core diameter 1.0 μ m in (b) and concentration 0.5 μ M in (a) and (b). Φ F and Φ B in (b) correspond to the optimum fiber length defined at the maximum of Φ F in (a).

Fig. 3
Fig. 3

(a), (c) Experimental setups and results for measuring the fluorescence captured fraction into the (b) backward and (d) forward mode of an MOF with LLF1 substrate glass and a core diameter of 2 μ m . The holes of the MOF are filled with a solution of 1 μ M quantum dot. Simulation results are shown by solid curves (b) and (d).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P j E ( z ) = a j E 2 N j E exp ( γ j E z ) ,
γ j E = k ( ϵ 0 μ 0 ) 1 2 ( 1 N j E ) Re ( n E ) Im ( n E ) e j E 2 d A ,
d P i F ( 0 , z ) = π exp ( γ i F z ) 4 ω F μ 0 n H F k N i F A z 1 z 2 e i F 2 P D d A d z .
Φ B = 2 A 1 ( γ j E + γ i F ) { 1 exp [ ( γ i F + γ j E ) L ] } ,
A = ξ α B λ 2 n H E ϵ 0 8 π n H F μ 0 δ j E H e i F 2 Re [ ( e j E × h j E * ) . z ̂ ] d A 4 N i F N j E ,
Φ F = 2 A exp ( γ i F L ) ( γ j E γ i F ) { 1 exp [ ( γ i F γ j E ) L ] } .

Metrics