Abstract

We present a new method for recording digital holograms under incoherent illumination. Light is reflected from a 3D object, propagates through a diffractive optical element (DOE), and is recorded by a digital camera. Three holograms are recorded sequentially, each for a different phase factor of the DOE. The three holograms are superposed in the computer, such that the result is a complex-valued Fresnel hologram. When this hologram is reconstructed in the computer, the 3D properties of the object are revealed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Breckinridge, Appl. Opt. 13, 2760 (1974).
    [CrossRef] [PubMed]
  2. G. Indebetouw, A. El Maghnouji, and R. Foster, J. Opt. Soc. Am. A 22, 892 (2005).
    [CrossRef]
  3. A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).
    [CrossRef]
  4. G. W. Stroke and R. C. Restrick, Appl. Phys. Lett. 7, 229 (1965).
    [CrossRef]
  5. G. Cochran, J. Opt. Soc. Am. 56, 1513 (1966).
    [CrossRef]
  6. P. J. Peters, Appl. Phys. Lett. 8, 209 (1966).
    [CrossRef]
  7. H. R. Worthington, Jr., J. Opt. Soc. Am. 56, 1397 (1966).
    [CrossRef]
  8. A. S. Marathay, J. Opt. Soc. Am. A 4, 1861 (1987).
    [CrossRef]
  9. G. Sirat and D. Psaltis, Opt. Lett. 10, 4 (1985).
    [CrossRef] [PubMed]
  10. Y. Li, D. Abookasis, and J. Rosen, Appl. Opt. 40, 2864 (2001).
    [CrossRef]
  11. Y. Sando, M. Itoh, and T. Yatagai, Opt. Lett. 28, 2518 (2003).
    [CrossRef] [PubMed]
  12. T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
    [CrossRef]
  13. L. Mertz and N. O. Young, in Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, ed. (Chapman & Hall, 1961), p. 305.
  14. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4, pp. 63-95.
  15. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]
  16. D. Kim and B. Javidi, Opt. Express 12, 5539 (2004).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (2)

2001 (1)

1997 (1)

1987 (1)

1985 (1)

1974 (1)

1966 (3)

1965 (2)

A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).
[CrossRef]

G. W. Stroke and R. C. Restrick, Appl. Phys. Lett. 7, 229 (1965).
[CrossRef]

Abookasis, D.

Breckinridge, J. B.

Cochran, G.

El Maghnouji, A.

Foster, R.

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4, pp. 63-95.

Indebetouw, G.

Itoh, M.

Javidi, B.

Kim, D.

Li, Y.

Lohmann, A. W.

Marathay, A. S.

Mertz, L.

L. Mertz and N. O. Young, in Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, ed. (Chapman & Hall, 1961), p. 305.

Peters, P. J.

P. J. Peters, Appl. Phys. Lett. 8, 209 (1966).
[CrossRef]

Poon, T.-C.

T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
[CrossRef]

Psaltis, D.

Restrick, R. C.

G. W. Stroke and R. C. Restrick, Appl. Phys. Lett. 7, 229 (1965).
[CrossRef]

Rosen, J.

Sando, Y.

Sirat, G.

Stroke, G. W.

G. W. Stroke and R. C. Restrick, Appl. Phys. Lett. 7, 229 (1965).
[CrossRef]

Worthington, H. R.

Yamaguchi, I.

Yatagai, T.

Young, N. O.

L. Mertz and N. O. Young, in Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, ed. (Chapman & Hall, 1961), p. 305.

Zhang, T.

Adv. Imaging Electron Phys. (1)

T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. W. Stroke and R. C. Restrick, Appl. Phys. Lett. 7, 229 (1965).
[CrossRef]

P. J. Peters, Appl. Phys. Lett. 8, 209 (1966).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (3)

Other (2)

L. Mertz and N. O. Young, in Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, ed. (Chapman & Hall, 1961), p. 305.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4, pp. 63-95.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of FINCH recorder. BS, beam splitter; SLM, spatial light modulator; CCD, charge-coupled device; L is a spherical lens with f = 25 cm focal length. Δ λ indicates a chromatic filter with a bandwidth of Δ λ = 60 nm .

Fig. 2
Fig. 2

(a) Phase distribution of the reflection masks displayed on the SLM, with θ = 0 ° , (b) θ = 120 ° , (c) θ = 240 ° . (d) Enlarged portion of (a) indicating that half (randomly chosen) of the SLM’s pixels modulate light with a constant phase. (e) Magnitude and (f) phase of the final on-axis digital hologram. (g) Reconstruction of the hologram of the three letters at the best focus distance of O. (h) Same reconstruction at the best focus distance of S, and (i) of A.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ( x D , y D ) = 1 2 + 1 2 exp [ i π λ a ( x D 2 + y D 2 ) + i θ ] = 1 2 + 1 2 Q ( 1 a ) exp ( i θ ) ,
I P ( x , y ) = A Q [ ( f ( f z ) z + d 1 + d 2 ) 1 ] + Q [ ( a f ( f z ) + a z d 1 z a f ( f z ) z d 1 + d 2 ) 1 ] exp ( i θ ) 2 ,
I P ( x , y ) = A ( 2 + exp { i π λ γ ( z ) [ ( x + a x s f ) 2 + ( y + a y s f ) 2 ] + i θ } + exp { i π λ γ ( z ) [ ( x + a x s f ) 2 + ( y + a y s f ) 2 ] i θ } ) ,
H ( x , y ) A ( C + g ( x s , y s , z s ) exp { i π λ γ ( z ) [ ( x + a x s f ) 2 + ( y + a y s f ) 2 ] + i θ } d x s d y s d z s + g ( x s , y s , z s ) exp { i π λ γ ( z ) [ ( x + a x s f ) 2 + ( y + a y s f ) 2 ] i θ } ) d x s d y s d z s .
H F ( x , y ) = H 1 ( x , y ) [ exp ( i θ 3 ) exp ( i θ 2 ) ] + H 2 ( x , y ) [ exp ( i θ 1 ) exp ( i θ 3 ) ] + H 3 ( x , y ) [ exp ( i θ 2 ) exp ( i θ 1 ) ] ,
s ( x , y , z ) = H F ( x , y ) exp [ i π λ z ( x 2 + y 2 ) ] ,

Metrics