Abstract

In multimode bandgap guiding fibers higher-order modes have high radiation losses. Once excited, after a short propagation distance such modes are leaked out of the fiber core. Reduction of the number of excited modes in the fiber core leads to a decrease of intermodal dispersion and a dramatic enhancement of fiber bandwidth. Due to the increase in the propagation loss, bandwidth enhancement by differential mode attenuation also leads to the reduction of the maximal length of a usable fiber span. We demonstrate that by proper design of a photonic crystal reflector long fiber spans of high bandwidth are possible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.
  2. GigaHouse TOWN Project in Keio Engineering Foundation, http://www.ght.jp.
  3. Y. Koike, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 17.
  4. W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).
  5. S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
    [CrossRef]
  6. T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt. 35, 2048 (1996).
    [CrossRef] [PubMed]
  7. S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
    [CrossRef]
  8. H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.
  9. W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
    [CrossRef]
  10. Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
    [CrossRef]
  11. M. Skorobogatiy, Opt. Lett. 30, 2991 (2005).
    [CrossRef] [PubMed]
  12. M. Skorobogatiy, S. A. Jacobs, S. Johnson, and Y. Fink, Opt. Express 10, 1227 (2002).
    [PubMed]

2006

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

2005

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

M. Skorobogatiy, Opt. Lett. 30, 2991 (2005).
[CrossRef] [PubMed]

2002

M. Skorobogatiy, S. A. Jacobs, S. Johnson, and Y. Fink, Opt. Express 10, 1227 (2002).
[PubMed]

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
[CrossRef]

1996

Bachmann, A.

H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.

Bentley, P.

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

Bloss, M.

H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.

Curticapean, D.

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

Daum, W.

W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).

Dubois, C.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Fink, Y.

Gao, Y.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Golowich, S.

S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
[CrossRef]

Guo, N.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Ishigure, T.

Jacobs, S. A.

Johnson, S.

Junger, S.

B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.

Koike, Y.

T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt. 35, 2048 (1996).
[CrossRef] [PubMed]

Y. Koike, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 17.

Krauser, J.

W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).

Landwehr, J.

S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
[CrossRef]

Large, M.

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

Lieber, W.

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

Manos, S.

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

Nihei, E.

Nontasut, N.

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

Offenbeck, B.

B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.

Poisel, H.

H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.

Poladian, L.

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

Pone, E.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Skorobogata, O.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Skorobogatiy, M.

Tschekalinskij, W.

B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.

Weber, N.

B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.

Wiel, S. V.

S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
[CrossRef]

Yi, X. S.

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

Zamzow, P.

W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).

Ziemann, O.

W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).

H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.

Appl. Opt.

Appl. Phys. B: Photophys. Laser Chem.

W. Lieber, X. S. Yi, N. Nontasut, and D. Curticapean, Appl. Phys. B: Photophys. Laser Chem. 75, 487 (2002).
[CrossRef]

J. Mater. Res.

Y. Gao, N. Guo, O. Skorobogata, E. Pone, C. Dubois, and M. Skorobogatiy, J. Mater. Res. 21, 2246 (2006).
[CrossRef]

Lect. Notes Comput. Sci.

S. Manos, L. Poladian, P. Bentley, and M. Large, Lect. Notes Comput. Sci. 3410, 636 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Technometrics

S. Golowich, J. Landwehr, and S. V. Wiel, Technometrics 44, 215 (2002).
[CrossRef]

Other

H. Poisel, O. Ziemann, A. Bachmann, and M. Bloss, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 157.

B. Offenbeck, S. Junger, W. Tschekalinskij, and N. Weber, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 82.

GigaHouse TOWN Project in Keio Engineering Foundation, http://www.ght.jp.

Y. Koike, Proceedings of the 15th International Conference on Plastic Optical Fiber (POF'06) (2006), p. 17.

W. Daum, J. Krauser, P. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication (Springer-Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Solid-core photonic crystal Bragg preform and drawn fibers. The center wavelength of a reflector bandgap can be chosen anywhere in the visible, manifesting itself in the specific color of a drawn fiber.

Fig. 2
Fig. 2

Modal propagation losses and corresponding group velocities of the core guided modes of the (a) SI-TIR fiber, (b) solid-core Bragg fiber with four reflector layers. Insets: fiber refractive index profiles. (c) Schematic of a fiber span including a bend and a straight section.

Fig. 3
Fig. 3

(a) Bandwidth comparison of the SI-TIR and photonic crystal Bragg fibers containing a macrobend of radius R bend . Two Bragg fiber designs with four- and eight-layer reflectors are considered. At the bend input 100% power is in the Gaussian-like H E 11 mode of a straight fiber. (b) Maximal length of a Bragg fiber span resulting in a total power loss of 20 dB .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = j P j 0 d w F j exp ( i β j ( ω ) z i ω t ) f ( ω ) ,
β j ( ω 0 + Δ ω ) = Re ( β j 0 ) + Δ ω v i g + ( Δ ω ) 2 D i 2 + i α i 2 ,
τ 2 ( z ) = F t 2 F F F ( F t F F F ) 2 .
τ 2 ( z ) = τ 0 2 8 + z 2 ( [ v g 2 v g 1 2 ] + 2 D 2 τ 0 2 ) ,
z B max ( z ) = 3 ( 8 Δ v g 2 ) ,

Metrics