Abstract

We show a femtosecond fluorescence upconversion setup with broadband detection to measure time-resolved emission spectra in the 300550nm range, upon excitation between 250 and 300nm, with a time resolution of 100fs. We present time-resolved fluorescence emission spectra of 2,5-diphenyloxazole in solution, which demonstrate the capabilities of the setup.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shah, IEEE J. Quantum Electron. 24, 276 (1988).
    [CrossRef]
  2. R. S. Fee and M. Maroncelli, Chem. Phys. 183, 235 (1994).
    [CrossRef]
  3. T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
    [CrossRef]
  4. R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
    [CrossRef]
  5. W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
    [CrossRef] [PubMed]
  6. X. H. Shen and J. R. Knutson, J. Phys. Chem. B 105, 6260 (2001).
    [CrossRef]
  7. G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
    [CrossRef] [PubMed]
  8. C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
    [CrossRef]
  9. A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
    [CrossRef]
  10. W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
    [CrossRef]
  11. C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
    [CrossRef]
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
  13. W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
    [CrossRef]
  14. T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
    [CrossRef]
  15. L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
    [CrossRef]

2007 (2)

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

2006 (3)

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

2004 (1)

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

2001 (1)

X. H. Shen and J. R. Knutson, J. Phys. Chem. B 105, 6260 (2001).
[CrossRef]

1998 (1)

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

1995 (1)

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

1994 (2)

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

R. S. Fee and M. Maroncelli, Chem. Phys. 183, 235 (1994).
[CrossRef]

1988 (1)

J. Shah, IEEE J. Quantum Electron. 24, 276 (1988).
[CrossRef]

Baldacchino, G.

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

Bonati, C.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

Bressler, C.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

Cannizzo, A.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

Chergui, M.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

Constantine, S.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

El Nahhas, A.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

Fee, R. S.

R. S. Fee and M. Maroncelli, Chem. Phys. 183, 235 (1994).
[CrossRef]

Fleming, G. R.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Gawelda, W.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

Gustavsson, T.

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

Haacke, S.

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

Improta, R.

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

Jimenez, R.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Kim, J.

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

Kindermann, M.

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

Knutson, J. R.

X. H. Shen and J. R. Knutson, J. Phys. Chem. B 105, 6260 (2001).
[CrossRef]

Kumar, P. V.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Lazzarotto, E.

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

Lommel, D.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Lu, W. Y.

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

Markovitsi, D.

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

Maroncelli, M.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

R. S. Fee and M. Maroncelli, Chem. Phys. 183, 235 (1994).
[CrossRef]

Mialocq, J. C.

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

Milne, C. J.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

Mohamed, M. B.

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

Morais, J.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Okobiah, O.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

Pham, V. T.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

Pommeret, S.

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

Qiu, W. H.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

Reed, M. K.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Sarkar, N.

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

Shah, J.

J. Shah, IEEE J. Quantum Electron. 24, 276 (1988).
[CrossRef]

Shen, X. H.

X. H. Shen and J. R. Knutson, J. Phys. Chem. B 105, 6260 (2001).
[CrossRef]

Steiner-Shepard, M. K.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Tonti, D.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

Tortschanoff, A.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

van Mourik, F.

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

vander Veen, R.

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

Voitchovsky, K.

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

Wang, L. J.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

Yang, Y.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

Zewail, A. H.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

Zgrablic, G.

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

Zhang, L. Y.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

Zhong, D. P.

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

Zhou, Y.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Ziegler, L. D.

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

Angew. Chem., Int. Ed. (1)

A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, Angew. Chem., Int. Ed. 45, 3174 (2006).
[CrossRef]

Biophys. J. (1)

G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, and M. Chergui, Biophys. J. 88, 2779 (2005).
[CrossRef] [PubMed]

Chem. Phys. (1)

R. S. Fee and M. Maroncelli, Chem. Phys. 183, 235 (1994).
[CrossRef]

Chem. Phys. Lett. (3)

T. Gustavsson, G. Baldacchino, J. C. Mialocq, and S. Pommeret, Chem. Phys. Lett. 236, 587 (1995).
[CrossRef]

W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Chem. Phys. Lett. 388, 120 (2004).
[CrossRef]

T. Gustavsson, N. Sarkar, E. Lazzarotto, D. Markovitsi, and R. Improta, Chem. Phys. Lett. 429, 551 (2006).
[CrossRef]

Chimia (1)

W. Gawelda, A. Cannizzo, V. T. Pham, A. El Nahhas, C. J. Milne, R. vander Veen, C. Bressler, and M. Chergui, Chimia 61, 179 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. D. Ziegler, J. Morais, Y. Zhou, S. Constantine, M. K. Reed, M. K. Steiner-Shepard, and D. Lommel, IEEE J. Quantum Electron. 34, 1758 (1998).
[CrossRef]

J. Shah, IEEE J. Quantum Electron. 24, 276 (1988).
[CrossRef]

J. Phys. Chem. B (2)

W. H. Qiu, L. Y. Zhang, O. Okobiah, Y. Yang, L. J. Wang, D. P. Zhong, and A. H. Zewail, J. Phys. Chem. B 110, 10540 (2006).
[CrossRef] [PubMed]

X. H. Shen and J. R. Knutson, J. Phys. Chem. B 105, 6260 (2001).
[CrossRef]

Nature (1)

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Phys. Rev. B (2)

C. Bonati, M. B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. van Mourik, and M. Chergui, Phys. Rev. B 71, 205317 (2005).
[CrossRef]

C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
[CrossRef]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for time-resolved UV-fluorescence upconversion. SF, sum frequency crystal; SHG, second-harmonic generation crystal; DM, 250 300 nm dielectric mirrors; PM, parabolic mirrors; S, sample.

Fig. 2
Fig. 2

(a) Fluorescence of PPO in cyclohexane detected by the CCD camera as a function of the delays of the gate pulse, (b) time trace of fluorescence intensity at 355 nm , (c) spectrum integrated over the whole 100 ps long scan (blue trace) compared with reference steady-state emission spectrum (red trace).

Fig. 3
Fig. 3

(a) Water Raman line excited at 290 nm , for three different SF β-BBO crystal thickness (dots) and in 100 μ m thick flow cell. Continuous curves are the best fit in terms of a Gaussian convoluted with a square function (see text for details). The relative measured widths are reported in Table 1. (b) Relative UC efficiency as function of SF β-BBO thickness.

Fig. 4
Fig. 4

Representative emission spectra of PPO in cyclohexane at different delays of the gate pulse.

Tables (1)

Tables Icon

Table 1 Total Temporal Resolution (fs) Estimated as FWHM of the Water Raman Line a Varying Flow Cell ( d F C ) and SF-BBO Nominal Thickness and Contribution of SF Crystal to the Total Temporal Resolution ( δ S Q )

Metrics