Abstract

Coherent anti-Stokes Raman scattering (CARS) microspectroscopy of silicon components is demonstrated with pump and probe fields delivered by a mode-locked Cr:forsterite laser and the frequency-shifted soliton output of a photonic-crystal fiber as a Stokes field. CARS microspectroscopy is shown to allow a visualization of microscale features and defects on the surface of silicon wafers, offering much promise for online diagnostics of electronic and photonic silicon chip components.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).
  2. W.Kiefer, ed., Femtosecond Coherent Raman Spectroscopy, Special Issue, J. Raman Spectrosc. 31(1-2), 3 (2000).
  3. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).
  4. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  5. A. M. Zheltikov and N. I. Koroteev, Phys. Usp. 42, 321 (1999).
    [CrossRef]
  6. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  7. C. L. Evans, E. O. Potma, M. Poureshagh, D. Coté, C. L. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 102, 16807 (2005).
    [CrossRef] [PubMed]
  8. P. St. J. Russell, Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  9. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).
    [CrossRef]
  10. A. M. Zheltikov, Phys. Usp. 49, 605 (2006).
    [CrossRef]
  11. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, Opt. Lett. 28, 1123 (2003).
    [CrossRef] [PubMed]
  12. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Rev. E 70, 057601 (2004).
    [CrossRef]
  13. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Lett. 31, 2323 (2006).
    [CrossRef] [PubMed]
  14. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, Opt. Lett. 31, 1328-1330 (2006).
    [CrossRef] [PubMed]
  15. H. Kano and H. Hamaguchi, Opt. Express 13, 1322 (2005).
    [CrossRef] [PubMed]
  16. B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
    [CrossRef] [PubMed]
  17. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, J. Opt. Soc. Am. B 22, 1934 (2005).
    [CrossRef]
  18. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Usp. 47, 687 (2004).
    [CrossRef]
  19. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 11, 2862 (2003).
    [CrossRef] [PubMed]
  20. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
    [CrossRef]
  21. J. J. Wynne, Phys. Rev. 178, 1295 (1969).
    [CrossRef]

2006 (4)

2005 (3)

2004 (2)

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Rev. E 70, 057601 (2004).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Usp. 47, 687 (2004).
[CrossRef]

2003 (3)

2002 (2)

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

1999 (2)

A. M. Zheltikov and N. I. Koroteev, Phys. Usp. 42, 321 (1999).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1982 (1)

1969 (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Appl. Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Phys. Rev. E (1)

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Rev. E 70, 057601 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Phys. Usp. (3)

A. M. Zheltikov, Phys. Usp. 49, 605 (2006).
[CrossRef]

A. M. Zheltikov and N. I. Koroteev, Phys. Usp. 42, 321 (1999).
[CrossRef]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Phys. Usp. 47, 687 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Poureshagh, D. Coté, C. L. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 102, 16807 (2005).
[CrossRef] [PubMed]

Science (1)

P. St. J. Russell, Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (3)

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).

W.Kiefer, ed., Femtosecond Coherent Raman Spectroscopy, Special Issue, J. Raman Spectrosc. 31(1-2), 3 (2000).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the experimental setup: Cr:F, Cr:forsterite laser; GP1–GP3, Glan prisms; λ 2 , half-wave plates; PD, photodetector. Inset, diagram of a two-color CARS process with ω CARS = 2 ω p ω s = ω p + Ω R .

Fig. 2
Fig. 2

Spectra of the CARS signal from a 1.5 mm thick silicon wafer measured with Cr:forsterite laser and PCF output beams focused on the wafer surface (curve 1) and with a separation between the beam focus and the wafer surface set equal to 300 μ m (curve 2), 450 μ m (curve 3), 600 μ m (curve 4). Inset 1, cross-section image of the PCF. Inset 2, spectra of the light field used for CARS experiments: open circles, Cr:forsterite laser pulse; filled circles, PCF output filtered by reflection off a diffraction grating. Inset 3, energy of the CARS signal measured as a function of the energy of Cr:forsterite laser pulses (filled circles) and the quadratic fit for this dependence (dashed curve).

Fig. 3
Fig. 3

CARS image of a defect on the surface of a silicon wafer (shown in the inset): (a) general and (b) closeup view.

Metrics