Abstract

It is proposed that a side-coupled integrated spaced sequence of resonators (SCISSOR) be used to adapt Fresnel phase matching to the case of highly confining waveguides. As is the case for bulk media, this method of quasi-phase-matching (QPM) allows resonant or nonresonant QPM. This property can be used to control the spectral bandwidth of the phase-matching curve.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
    [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  3. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, Appl. Phys. Lett. 66, 3410 (1995).
    [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  5. R. Haïdar, N. Forget, P. Kupecek, and E. Rosencher, J. Opt. Soc. Am. B 21, 1522 (2004).
    [CrossRef]
  6. J. E. Heebner, R. W. Boyd, and Q.-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
    [CrossRef]
  7. M. K. Chin and S. T. Ho, J. Lightwave Technol. 16, 1433 (1998).
    [CrossRef]
  8. A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
    [CrossRef]
  9. R. Haïdar, Appl. Phys. Lett. 88, 211102 (2006).
    [CrossRef]
  10. Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
    [CrossRef]
  11. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
    [CrossRef]
  12. A. De Rossi and V. Berger, Phys. Rev. Lett. 88, 043901 (2002).
    [CrossRef] [PubMed]
  13. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
    [CrossRef]

2007 (1)

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

2006 (2)

R. Haïdar, Appl. Phys. Lett. 88, 211102 (2006).
[CrossRef]

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[CrossRef]

2004 (2)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

R. Haïdar, N. Forget, P. Kupecek, and E. Rosencher, J. Opt. Soc. Am. B 21, 1522 (2004).
[CrossRef]

2002 (2)

1998 (2)

M. K. Chin and S. T. Ho, J. Lightwave Technol. 16, 1433 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

1995 (1)

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, Appl. Phys. Lett. 66, 3410 (1995).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1973 (1)

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Appl. Phys. Lett. (4)

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, Appl. Phys. Lett. 66, 3410 (1995).
[CrossRef]

R. Haïdar, Appl. Phys. Lett. 88, 211102 (2006).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. A (1)

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. De Rossi and V. Berger, Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Description of the proposed implementation of Fresnel PM in AlGaAs waveguides. y corresponds to the crystallographic axis [ 001 ] and z to [ 110 ] .

Fig. 2
Fig. 2

Coupling between the access straight waveguide and resonator number p.

Fig. 3
Fig. 3

Conversion yield η ( 200 ) as a function of the F wavelength in the resonant and lossless case. Phase shifts ϕ ω , ϕ 2 ω and the phase error Δ ϕ are also shown.

Fig. 4
Fig. 4

Conversion yield η ( 200 ) as a function of the F wavelength in the nonresonant and lossless case. Phase shifts ϕ ω , ϕ 2 ω , and the phase error Δ ϕ are also shown.

Fig. 5
Fig. 5

Conversion yield η as a function of p for different values of γ ω 2 = γ 2 ω 2 = γ 2 and α = α ω = α 2 ω , in the resonant case of Fig. 3 and with λ ω = 1550 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ A ω , p ( 0 ) A ω ( z p + ) ] = [ τ ω j κ ω j κ ω τ ω ] [ A ω , p ( 2 π ) A ω ( z p ) ] .
t ω = A ω ( z p + ) A ω ( z p ) = τ ω a ω γ ω 2 exp ( j φ ω ) 1 τ ω a ω exp ( j φ ω ) ,
d A 2 ω d z = K A ω 2 ( z p 1 + ) exp ( j Δ β z ) .
S = + [ H ω ( x ) ] 2 E 2 ω ( x ) d x = 32 ω ϵ 0 n ω 2 3 π β ω 2 ω μ 0 β 2 ω d .
A 2 ω ( z p ) = A 2 ω ( z p 1 + ) + 2 K Δ β A ω 2 ( z p 1 + ) exp [ j Δ β ( p 1 2 ) L ] sin ( Δ β L 2 ) .
A 2 ω ( z p + ) = t 2 ω A 2 ω ( z p 1 + ) + 2 K Δ β t 2 ω t ω 2 exp ( j Δ β L 2 ) × sin ( Δ β L 2 ) [ t ω 2 exp ( j Δ β L ) ] p A ω 2 ( 0 ) ,
u p = X p u 0 + Y k = 1 p X p k q k = Y q X p q p X q .
η ( p ) = 4 K 2 Δ β 2 T 2 ω A ω ( 0 ) 2 sin 2 ( Δ β L 2 ) × T 2 ω p + T ω 2 p 2 ( T 2 ω T ω ) p cos ( p Δ ϕ ) T 2 ω + T ω 2 2 T 2 ω T ω cos Δ ϕ ,
p m a x = E [ ln ( ln T 2 ω 2 ln T ω ) ln ( T ω T 2 ω ) ] ,

Metrics