Abstract

A novel metal–dielectric structure for efficient confinement and guiding of surface plasmon-polaritons is proposed. The proposed quasi-coplanar geometry achieves a trenchlike mode confinement over a wide range of spectrum by substituting a trench structure with two patterned metal layers, which will simplify the fabrication steps significantly. Using the finite-element method, the modal characteristics and the impact of waveguide structural parameters on them were investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
    [CrossRef]
  2. D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 6323 (2004).
    [CrossRef]
  3. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, Opt. Lett. 31, 3447 (2006).
    [CrossRef] [PubMed]
  4. Y. Satuby and M. Orenstein, Opt. Express 15, 4247 (2007).
    [CrossRef] [PubMed]
  5. G. Veronis and S. Fan, Opt. Lett. 30, 3359 (2005).
    [CrossRef]
  6. L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005).
    [CrossRef] [PubMed]
  7. L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006).
    [CrossRef] [PubMed]
  8. R. Zia, A. Chandran, and M. L. Brongersma, Opt. Lett. 30, 1473 (2005).
    [CrossRef] [PubMed]
  9. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, Opt. Express 12, 5481 (2004).
    [CrossRef] [PubMed]
  10. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  11. F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  12. B. Wang and G. P. Wang, Appl. Phys. Lett. 90, 013114 (2007).
    [CrossRef]
  13. Comsol Multiphysics, Comsol AB.
  14. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]

2007 (2)

B. Wang and G. P. Wang, Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

Y. Satuby and M. Orenstein, Opt. Express 15, 4247 (2007).
[CrossRef] [PubMed]

2006 (3)

L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, Opt. Lett. 31, 3447 (2006).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

2005 (4)

2004 (2)

2003 (1)

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Appl. Phys. Lett. (5)

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 6323 (2004).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

F. Kusonoki, T. Yotsuya, J. Takahara, and T. Kobayashi, Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

B. Wang and G. P. Wang, Appl. Phys. Lett. 90, 013114 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Other (1)

Comsol Multiphysics, Comsol AB.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a quasi-planar plasmonic waveguide (QCPW).

Fig. 2
Fig. 2

(a) Electric field amplitude, E , of the fundamental QCPW mode at λ o = 1550 nm . The arrows indicate the electric field. (b) E on a logarithmic scale for a better analysis of the mode confinement. Down to 20 dB ( 40 dB in intensity), the mode is confined within sub- λ o scale. (Between the two top stripes exists an unlabeled 10 dB contour loop. The 5 dB contour is plotted but not labeled.)

Fig. 3
Fig. 3

(a) Dispersion relation of the first two QCPW modes ( t s = w bs = 200 nm , w ts = 850 nm , w g = 300 nm ). The light line of the spacer material and the Au Si O 2 SPP dispersion are superimposed for comparison. The insets show E of the QCPW mode when A, λ o = 2.5 ; B, λ o = 1.55 ; C, λ o = 0.66 μ m on a log scale down to 40 dB ( 80 dB in intensity). (b) Size of the QCPW mode versus λ o . Mode sizes are measured at the 10 and 20 dB contours of E ( 20 and 40 dB in field intensity, respectively).

Fig. 4
Fig. 4

Impacts of top (a) stripe width ( w ts ) , (b) gap width ( w g ) , and (c) spacer thickness ( t s ) on the size of the QCWP fundamental modes. (d) Impact of the above three parameters on the effective index ( n eff ) .

Metrics