Abstract

A theoretical study of a new application of a simple π-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a π phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91THz, and a nonlinear phase response, can convert a 40Gbits noisy dark-soliton signal into a high-quality 40Gbits return-to-zero signal with a peak power level of 17.5dB greater than that by the existing Mach–Zehnder interferometer with free spectral range of 1.91THz and a linear phase response.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
    [CrossRef]
  2. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, IEEE J. Sel. Top. Quantum Electron. 6, 363 (2000).
    [CrossRef]
  3. W. Zhao and E. Bourkoff, Opt. Lett. 14, 703 (1989).
    [CrossRef] [PubMed]
  4. W. Zhao and E. Bourkoff, Opt. Lett. 14, 1371 (1989).
    [CrossRef] [PubMed]
  5. N. Q. Ngo and L. N. Binh, Opt. Commun. 132, 389 (1996).
    [CrossRef]
  6. N. Q. Ngo, IEEE Photon. Technol. Lett. 19, 471 (2007).
    [CrossRef]
  7. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
    [CrossRef] [PubMed]
  8. M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).
    [CrossRef] [PubMed]
  9. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V. Plant, Opt. Express 13, 3068 (2005).
    [CrossRef] [PubMed]
  10. G. D. Marshall, M. Ams, and M. J. Withford, Opt. Lett. 31, 2690 (2006).
    [CrossRef] [PubMed]
  11. S. Kobayashi, M. Sawada, T. Suda, K. Ogura, and H. Tsushima, IEEE Photon. Technol. Lett. 19, 363 (2007).
    [CrossRef]
  12. S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, IEEE Photon. Technol. Lett. 17, 2122 (2005).
    [CrossRef]
  13. W. H. Wong, E. Y. B. Pun, and K. S. Chan, IEEE Photon. Technol. Lett. 15, 1731 (2003).
    [CrossRef]
  14. K. Kintaka, J. Nishii, H. Nishiyama, Y. Kawamoto, and A. Sakamoto, J. Lightwave Technol. 21, 831 (2003).
    [CrossRef]
  15. C. Greiner, T. W. Mossberg, and D. Iazikov, Opt. Lett. 29, 806 (2004).
    [CrossRef] [PubMed]

2007 (4)

N. Q. Ngo, IEEE Photon. Technol. Lett. 19, 471 (2007).
[CrossRef]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
[CrossRef] [PubMed]

M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).
[CrossRef] [PubMed]

S. Kobayashi, M. Sawada, T. Suda, K. Ogura, and H. Tsushima, IEEE Photon. Technol. Lett. 19, 363 (2007).
[CrossRef]

2006 (1)

2005 (2)

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, IEEE Photon. Technol. Lett. 17, 2122 (2005).
[CrossRef]

M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V. Plant, Opt. Express 13, 3068 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

W. H. Wong, E. Y. B. Pun, and K. S. Chan, IEEE Photon. Technol. Lett. 15, 1731 (2003).
[CrossRef]

K. Kintaka, J. Nishii, H. Nishiyama, Y. Kawamoto, and A. Sakamoto, J. Lightwave Technol. 21, 831 (2003).
[CrossRef]

2000 (1)

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, IEEE J. Sel. Top. Quantum Electron. 6, 363 (2000).
[CrossRef]

1998 (1)

Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[CrossRef]

1996 (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 132, 389 (1996).
[CrossRef]

1989 (2)

IEEE J. Sel. Top. Quantum Electron. (1)

M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, IEEE J. Sel. Top. Quantum Electron. 6, 363 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

N. Q. Ngo, IEEE Photon. Technol. Lett. 19, 471 (2007).
[CrossRef]

S. Kobayashi, M. Sawada, T. Suda, K. Ogura, and H. Tsushima, IEEE Photon. Technol. Lett. 19, 363 (2007).
[CrossRef]

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, IEEE Photon. Technol. Lett. 17, 2122 (2005).
[CrossRef]

W. H. Wong, E. Y. B. Pun, and K. S. Chan, IEEE Photon. Technol. Lett. 15, 1731 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 132, 389 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a reflective PSWBG.

Fig. 2
Fig. 2

(a) Reflectivity and (b) phase responses of the reflective PSWBG with r = 0.6 , 0.9 and the MZ interferometer.

Fig. 3
Fig. 3

(a)–(d) 40 Gbit s input dark-soliton signals with no noise and with noises σ = 0.02 , 0.04, and 0.06, respectively; (e)–(h) corresponding RZ signals at the MZ interferometer’s output, respectively; and (i)–(l) corresponding RZ signals at the reflective PSWBG’s output with r = 0.9 , respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T PSWBG = T WBG T φ T WBG ,
T 11 = T 22 * = [ cosh ( γ l ) j ( σ γ ) sinh ( γ l ) ] exp [ j ( ω τ + σ l ) ] ,
T 12 = T 21 * = j ( κ γ ) sinh ( γ l ) exp [ j ( ω τ + σ l ) ] ,
T φ , 11 = exp ( j φ 2 ) , T φ , 22 = exp ( j φ 2 ) ,
T φ , 12 = T φ , 21 = 0 .
H R ( ω ) = R ( ω ) E in ( ω ) = T PSWBG , 21 T PSWBG , 22 ,
H R ( z ) = r ( 1 z 1 ) 1 r 2 z 1 ,
x ( t ) = { tanh ( t T 0 + q 0 ) + σ exp [ j ( t T 0 + q 0 ) 2 ( 2 σ 2 ) ] , < t T 0 < 0 tanh ( t T 0 q 0 ) + σ exp [ j ( t T 0 q 0 ) 2 ( 2 σ 2 ) ] , 0 t T 0 < ,
signal attenuation ( dB ) = 10 log ( peak intensity of RZ signal peak intensity of input signal ) ,

Metrics