Abstract

We demonstrate a novel design for a femtosecond vector field synthesizer. Pulse shaping of all four degrees of freedom of the electric field (amplitude, phase, ellipticity, and orientation angle) is achieved with a single 1D double-layer spatial light modulator in a zero-dispersion compressor by modulating the amplitude and phase of the two transverse polarization components in separate halves of the modulator. Being a common-path arrangement, it is interferometrically stable and therefore usable for long-term measurements. The method can be broadly applied in coherent control and nonlinear spectroscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
    [CrossRef]
  2. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  3. T. Brixner and G. Gerber, Opt. Lett. 26, 557 (2001).
    [CrossRef]
  4. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
    [CrossRef]
  5. T. Brixner, Appl. Phys. B 76, 531 (2003).
  6. L. Polachek, D. Oron, and Y. Silberberg, Opt. Lett. 31, 631 (2006).
    [CrossRef] [PubMed]
  7. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, Appl. Opt. 32, 8354 (2006).
    [CrossRef]
  8. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, Opt. Lett. 22, 81 (1997).
    [CrossRef] [PubMed]
  9. C. Altucci, C. Delfin, L. Roos, M. B. Gaarde, A. L'Huillier, I. Mercer, T. Starczewski, and C.-G. Wahlström, Phys. Rev. A 58, 3934 (1998).
    [CrossRef]
  10. M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, Appl. Phys. B 70, S207 (2000).
    [CrossRef]
  11. D. N. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. 85, 542 (2000).
    [CrossRef] [PubMed]
  12. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef] [PubMed]
  13. N. Dudovich, D. Oron, and Y. Silberberg, Phys. Rev. Lett. 92, 103003 (2004).
    [CrossRef] [PubMed]
  14. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, Phys. Rev. Lett. 92, 133005 (2004).
    [CrossRef] [PubMed]
  15. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
    [CrossRef] [PubMed]
  16. T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, Phys. Rev. Lett. 95, 093901 (2005).
    [CrossRef] [PubMed]
  17. T. Brixner, F. J. García de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, Phys. Rev. B 73, 125437 (2006).
    [CrossRef]
  18. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
    [CrossRef] [PubMed]
  19. D. V. Voronine, D. Abramavicius, and S. Mukamel, J. Chem. Phys. 126, 044508 (2007).
    [CrossRef] [PubMed]

2007 (2)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
[CrossRef] [PubMed]

D. V. Voronine, D. Abramavicius, and S. Mukamel, J. Chem. Phys. 126, 044508 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, Appl. Opt. 32, 8354 (2006).
[CrossRef]

T. Brixner, F. J. García de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, Phys. Rev. B 73, 125437 (2006).
[CrossRef]

L. Polachek, D. Oron, and Y. Silberberg, Opt. Lett. 31, 631 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

2004 (3)

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Rev. Lett. 92, 103003 (2004).
[CrossRef] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, Phys. Rev. Lett. 92, 133005 (2004).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

T. Brixner, Appl. Phys. B 76, 531 (2003).

2002 (1)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

2001 (1)

2000 (3)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, Appl. Phys. B 70, S207 (2000).
[CrossRef]

D. N. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. 85, 542 (2000).
[CrossRef] [PubMed]

1998 (1)

C. Altucci, C. Delfin, L. Roos, M. B. Gaarde, A. L'Huillier, I. Mercer, T. Starczewski, and C.-G. Wahlström, Phys. Rev. A 58, 3934 (1998).
[CrossRef]

1997 (1)

1985 (1)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

Appl. Opt. (1)

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, Appl. Opt. 32, 8354 (2006).
[CrossRef]

Appl. Phys. B (3)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, Appl. Phys. B 74, S133 (2002).
[CrossRef]

T. Brixner, Appl. Phys. B 76, 531 (2003).

M. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, Appl. Phys. B 70, S207 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

J. Chem. Phys. (1)

D. V. Voronine, D. Abramavicius, and S. Mukamel, J. Chem. Phys. 126, 044508 (2007).
[CrossRef] [PubMed]

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Nature 446, 301 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

C. Altucci, C. Delfin, L. Roos, M. B. Gaarde, A. L'Huillier, I. Mercer, T. Starczewski, and C.-G. Wahlström, Phys. Rev. A 58, 3934 (1998).
[CrossRef]

Phys. Rev. B (1)

T. Brixner, F. J. García de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

D. N. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. 85, 542 (2000).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Rev. Lett. 92, 103003 (2004).
[CrossRef] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, Phys. Rev. Lett. 92, 133005 (2004).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The polarization shaper consists of a Wollaston prism, a two-lens telescope, and a folded zero-dispersion compressor. Amplitude modulation of a given frequency component is realized by, first, the SLM changing its state of polarization and, second, the Wollaston prism directing its undesired polarization component into a different direction.

Fig. 2
Fig. 2

(a) Laser spectrum without an analyzer (short-dashed curve) and the residual spectral amplitude before (dashed curve) and after compensation (dotted–dashed curve). Simulating the effect (solid curve) shows good agreement with the experiment. (b) Measured (dots) and simulated (solid curve) transmission through an analyzer set to 45 ° as a function of a flat phase applied to one arm.

Fig. 3
Fig. 3

(a) Spectral intensities for the analyzer set to 0 ° (solid curve) and 90 ° (dashed curve). (b) Simulated spectra.

Fig. 4
Fig. 4

Spectral intensities with the analyzer set to 45 ° (solid curve) and + 45 ° (dashed curve) for a period of (a) 9 nm and (c) 4.5 nm . The corresponding simulations are shown in (b) and (d).

Fig. 5
Fig. 5

(a) Schematic of the experiment. (b), (c) Spectral intensity versus wavelength and analyzer angle θ for two different α values. On top of each intensity plot is the original spectrum.

Metrics