Abstract

Generation of sub-two-cycle, microjoule pulses in the mid-infrared region is demonstrated. Fundamental and second-harmonic pulses of 25fs Ti:sapphire amplifier output were focused into the air to produce extremely broadband mid-infrared pulses by four-wave difference-frequency generation through the filamentation. The full width at half-maximum of the spectral bandwidth reaches one octave (2.55.5μm), which is sufficiently broad for sub-single-cycle pulse generation. The pulse width was estimated to be 13fs, without any compressors, by cross-correlation frequency resolved optical gating. The output energy of more than a few microjoule is sufficient for spectroscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. Seifert, V. Petrov, and M. Woerner, Opt. Lett. 19, 2009 (1994).
    [CrossRef] [PubMed]
  2. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  3. C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
    [CrossRef]
  4. H. K. Nienhuys, P. C. M. Planken, R. A. van Santen, and H. J. Bakker, Opt. Lett. 26, 1350 (2001).
    [CrossRef]
  5. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).
    [CrossRef]
  6. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett. 30, 2805 (2005).
    [CrossRef] [PubMed]
  7. A. Braum, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995).
    [CrossRef]
  8. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  9. T. Fuji, T. Horio, and T. Suzuki, Opt. Lett. 32, 2481 (2007).
    [CrossRef] [PubMed]
  10. S. A. Trushin, K. Kosma, W. Fuß, and W. E. Schmid, Opt. Lett. 32, 2432 (2007).
    [CrossRef] [PubMed]
  11. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Neidermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Wöste, Opt. Lett. 25, 1397 (2000).
    [CrossRef]
  12. A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).
    [CrossRef]
  13. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 91, 043905 (2003).
    [CrossRef] [PubMed]
  14. S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
    [CrossRef]
  15. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 27, 1174 (2002).
    [CrossRef]
  16. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, Opt. Lett. 27, 433 (2002).
    [CrossRef]
  17. A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef] [PubMed]
  18. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, Opt. Lett. 31, 1103 (2006).
    [CrossRef] [PubMed]
  19. X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
    [CrossRef] [PubMed]
  20. J. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
    [CrossRef] [PubMed]
  21. M. Machholm and N. E. Henriksen, Phys. Rev. Lett. 87, 193001 (2001).
    [CrossRef] [PubMed]
  22. P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 1 (2004).
    [CrossRef]
  23. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
    [CrossRef] [PubMed]

2007 (2)

2006 (3)

T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, Opt. Lett. 31, 1103 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett. 30, 2805 (2005).
[CrossRef] [PubMed]

2004 (2)

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 1 (2004).
[CrossRef]

2003 (1)

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (2)

2000 (3)

1998 (2)

A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

1995 (1)

1994 (2)

F. Seifert, V. Petrov, and M. Woerner, Opt. Lett. 19, 2009 (1994).
[CrossRef] [PubMed]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

Opt. Lett. (11)

Phys. Rev. A (1)

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

M. Machholm and N. E. Henriksen, Phys. Rev. Lett. 87, 193001 (2001).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef] [PubMed]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Rep. Prog. Phys. (1)

P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 1 (2004).
[CrossRef]

Science (1)

J. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the system. BBO, β-barium borate crystal; LN, lithium niobate crystal.

Fig. 2
Fig. 2

(a) Solid curve, the generated MIR spectrum obtained from the home-built Fourier-transform infrared spectrometer. Dashed curve, the four-wave mixing spectrum calculated with the measured fundamental and the second-harmonic (broadened by cross-phase modulation) spectra. (b) Fundamental spectrum. The spectrum did not change when the delay time between the fundamental and the second-harmonic pulses was adjusted. (c) Second-harmonic spectra when the delay time between the fundamental and the second-harmonic pulses was adjusted (solid curve) and was not adjusted (dashed curve).

Fig. 3
Fig. 3

(a) Measured XFROG trace. (b) Reconstructed MIR pulse. The FROG error is 0.018 with a 256 × 256 grid.

Metrics