Abstract

A microstructured optical fiber with a single design parameter is proposed and demonstrated. In such a structure three thin, long glass webs join in the fiber center, forming its core. By changing the web thickness it is possible to tune the zero-dispersion wavelength from 0.7to>2.0μm while keeping a tiny core area and single-mode guidance. Supercontinuum generation is shown in a silica fiber with a web thickness of 850nm. The small core area and the massive hole area also make the structure very attractive for the sensing and study of fluids.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 11, 843 (2003).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
    [CrossRef]
  4. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
    [CrossRef] [PubMed]
  5. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, Opt. Express 14, 13056 (2006).
    [CrossRef] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  7. V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, Opt. Express 11, 2641 (2003).
    [CrossRef] [PubMed]
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, Opt. Express 12, 5082 (2004).
    [CrossRef] [PubMed]
  9. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, Opt. Lett. 32, 2390 (2007).
    [CrossRef]
  10. V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).
    [CrossRef]
  11. T. M. Monro, D. J. Richardson, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
    [CrossRef]
  12. R. H. Sabersky, A. J. Acosta, E. G. Hauptmann, and E. M. Gates, Fluid Flow: A First Course in Fluid Mechanics, 4th. ed. (Prentice Hall, 1999).
  13. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]

2007 (1)

2006 (2)

2004 (2)

2003 (5)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).
[CrossRef]

V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, Opt. Express 11, 2641 (2003).
[CrossRef] [PubMed]

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 11, 843 (2003).
[CrossRef] [PubMed]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, Electron. Lett. 35, 1188 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (2)

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Other (1)

R. H. Sabersky, A. J. Acosta, E. G. Hauptmann, and E. M. Gates, Fluid Flow: A First Course in Fluid Mechanics, 4th. ed. (Prentice Hall, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Fiber scanning electron micrograph. Inset, noncircular fiber’s core. (B) Schematic representation of the fiber core. (C) Optical power distribution of fundamental optical mode at 1.55 μ m .

Fig. 2
Fig. 2

Chromatic dispersion of Y-like fibers with different web thicknesses. Inset, ZDW as a function of the web thickness of the Y-like fiber (black symbols) or taper diameter (gray symbols).

Fig. 3
Fig. 3

Sensitivity coefficient for fibers with different web thicknesses: from top to bottom, w = 0.5 , 0.6 , 0.7 , 0.85 , 1.0 1.5 μ m . Inset, transmittance spectrum through an 80 psi ( 4100   Torr ) acetylene-filled 30 cm long fiber.

Fig. 4
Fig. 4

SC generation in 98 mm long Y fibers (spectral width increases with input power). Dashed lines, pump wavelength. (A) Pump at 640 nm and input average powers of 5, 15, 22, 30, and 50 μ W ; gray line, ZDW. (B) Pump at 740 nm and input average powers of 15, 40, 70, 110, and 210 μ W . The width of the highest pump power spectrum (gray horizontal arrow) is more than 730 nm .

Metrics