Abstract

It has been demonstrated that the key to complete understanding of the mechanisms for terahertz (THz) generation from a p-type InAs wafer pumped by a subpicosecond Ti:sapphire amplifier lies in the dependences of the THz polarization on the azimuthal angle and polarization of the pump beam. At low enough pump intensities, photocurrent surge is the dominant mechanism for THz generation. However, the THz radiation originating from photocurrent surge is greatly reduced with increased pump intensity. Therefore, at sufficiently high pump intensities resonant optical rectification becomes the dominating mechanism for THz generation. The highest output power is measured to be 57μW.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Weiss, R. Wallenstein, and R. Beigang, Appl. Phys. Lett. 77, 4160 (2000).
    [CrossRef]
  2. R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, Physica B 376, 618 (2006).
    [CrossRef]
  3. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).
    [CrossRef]
  4. K. Liu, J. Xu, T. Yuan, and X. C. Zhang, Phys. Rev. B 73, 155330 (2006).
    [CrossRef]
  5. P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, J. Appl. Phys. 91, 5533 (2002).
    [CrossRef]
  6. M. Migita and M. Hangyo, Appl. Phys. Lett. 79, 3437 (2001).
    [CrossRef]
  7. X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
    [CrossRef] [PubMed]
  8. J. B. Khurgin, J. Opt. Soc. Am. B 11, 2492 (1994).
    [CrossRef]
  9. J. B. Khurgin, Semicond. Semimetals 59, 1 (1998).
    [CrossRef]
  10. M. F. Millea and A. H. Silver, J. Vac. Sci. Technol. 15, 1362 (1978).
    [CrossRef]
  11. J. F. J. Piper, T. D. Veal, M. J. Lowe, and C. F. McConville, Phys. Rev. B 73, 195321 (2006).
    [CrossRef]
  12. R. Adomavicius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, Appl. Phys. Lett. 85, 2463 (2004).
    [CrossRef]
  13. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Phys. Rev. Lett. 68, 102 (1992).
    [CrossRef] [PubMed]
  14. P. N. Saeta, B. I. Greene, and S. L. Chuang, Appl. Phys. Lett. 63, 3482 (1993).
    [CrossRef]
  15. M. Reid, I. V. Cravetchi, and R. Fedosejevs, Phys. Rev. B 72, 035201 (2005).
    [CrossRef]
  16. M. Reid and R. Fedosejevs, Proc. SPIE 5577, 659 (2004).
    [CrossRef]
  17. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
    [CrossRef]
  18. X.-C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992).
    [CrossRef]
  19. Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).
    [CrossRef]
  20. J. J. Wynne, Phys. Rev. 178, 1295 (1969).
    [CrossRef]
  21. R. Ascázubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005).
    [CrossRef]

2006 (3)

K. Liu, J. Xu, T. Yuan, and X. C. Zhang, Phys. Rev. B 73, 155330 (2006).
[CrossRef]

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, Physica B 376, 618 (2006).
[CrossRef]

J. F. J. Piper, T. D. Veal, M. J. Lowe, and C. F. McConville, Phys. Rev. B 73, 195321 (2006).
[CrossRef]

2005 (2)

M. Reid, I. V. Cravetchi, and R. Fedosejevs, Phys. Rev. B 72, 035201 (2005).
[CrossRef]

R. Ascázubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005).
[CrossRef]

2004 (3)

Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).
[CrossRef]

M. Reid and R. Fedosejevs, Proc. SPIE 5577, 659 (2004).
[CrossRef]

R. Adomavicius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, Appl. Phys. Lett. 85, 2463 (2004).
[CrossRef]

2002 (1)

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, J. Appl. Phys. 91, 5533 (2002).
[CrossRef]

2001 (1)

M. Migita and M. Hangyo, Appl. Phys. Lett. 79, 3437 (2001).
[CrossRef]

2000 (1)

C. Weiss, R. Wallenstein, and R. Beigang, Appl. Phys. Lett. 77, 4160 (2000).
[CrossRef]

1998 (2)

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).
[CrossRef]

J. B. Khurgin, Semicond. Semimetals 59, 1 (1998).
[CrossRef]

1994 (1)

1993 (1)

P. N. Saeta, B. I. Greene, and S. L. Chuang, Appl. Phys. Lett. 63, 3482 (1993).
[CrossRef]

1992 (3)

X.-C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992).
[CrossRef]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Phys. Rev. Lett. 68, 102 (1992).
[CrossRef] [PubMed]

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
[CrossRef] [PubMed]

1983 (1)

D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[CrossRef]

1978 (1)

M. F. Millea and A. H. Silver, J. Vac. Sci. Technol. 15, 1362 (1978).
[CrossRef]

1969 (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Appl. Phys. Lett. (4)

C. Weiss, R. Wallenstein, and R. Beigang, Appl. Phys. Lett. 77, 4160 (2000).
[CrossRef]

M. Migita and M. Hangyo, Appl. Phys. Lett. 79, 3437 (2001).
[CrossRef]

R. Adomavicius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, Appl. Phys. Lett. 85, 2463 (2004).
[CrossRef]

P. N. Saeta, B. I. Greene, and S. L. Chuang, Appl. Phys. Lett. 63, 3482 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).
[CrossRef]

J. Appl. Phys. (3)

X.-C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, J. Appl. Phys. 91, 5533 (2002).
[CrossRef]

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

M. F. Millea and A. H. Silver, J. Vac. Sci. Technol. 15, 1362 (1978).
[CrossRef]

Phys. Rev. (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Phys. Rev. B (5)

R. Ascázubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005).
[CrossRef]

J. F. J. Piper, T. D. Veal, M. J. Lowe, and C. F. McConville, Phys. Rev. B 73, 195321 (2006).
[CrossRef]

D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[CrossRef]

M. Reid, I. V. Cravetchi, and R. Fedosejevs, Phys. Rev. B 72, 035201 (2005).
[CrossRef]

K. Liu, J. Xu, T. Yuan, and X. C. Zhang, Phys. Rev. B 73, 155330 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).
[CrossRef] [PubMed]

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Phys. Rev. Lett. 68, 102 (1992).
[CrossRef] [PubMed]

Physica B (1)

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, Physica B 376, 618 (2006).
[CrossRef]

Proc. SPIE (1)

M. Reid and R. Fedosejevs, Proc. SPIE 5577, 659 (2004).
[CrossRef]

Semicond. Semimetals (1)

J. B. Khurgin, Semicond. Semimetals 59, 1 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Azimuthal-angle dependences of the polarization and output power of THz pulses at θ 75 ° and pump power of 926 mW . The polarization angle was measured relative to the p-polarization direction. Solid curves, fitting to data by use of Eq. (2).

Fig. 2
Fig. 2

Pump-polarization dependences of the polarization and output power of the THz pulses at θ 75 ° and pump power of 926 mW . Solid curves, theoretical results based on Eqs. (2, 3).

Fig. 3
Fig. 3

Effective and pseudononlinear coefficients plotted as a function of normalized pump intensity. For the highest pump power of 926 mW used in our experiment, I I sat 3.731 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P P = χ eff , P ( 2 ) E 2 + P J sin ( θ ) ,
P S = χ eff , S ( 2 ) E 2 ,
tan ( β ) = P S P P , P = P P 2 + P S 2 ,
P J = P J , 0 [ 1 exp ( I I sat ) ] ,

Metrics