Abstract

We report the dependence of Brillouin linewidths on the pump power below the threshold of Brillouin lasing in a silica fiber. The Stokes Brillouin shift in a silica fiber is nearly unchanged, and its linewidth decreases with increasing pump power. However, the anti-Stokes Brillouin shift becomes smaller and its linewidth larger with increasing pump power. We explain these experimental results by the distributed fluctuating source model.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 394-396.
  2. Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  3. R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
    [CrossRef]
  4. T. Tanemura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
    [CrossRef]
  5. A. Yeniay, J. M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  6. N. Goldblatt and M. Hercher, Phys. Rev. Lett. 20, 310 (1968).
    [CrossRef]
  7. M. J. Li, S. P. Li, and D. A. Nolan, J. Lightwave Technol. 23, 3606 (2005).
    [CrossRef]

2005 (1)

2002 (2)

1995 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 394-396.

1991 (1)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
[CrossRef]

1985 (1)

Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

1968 (1)

N. Goldblatt and M. Hercher, Phys. Rev. Lett. 20, 310 (1968).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 394-396.

Boyd, R. W.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
[CrossRef]

Delavaux, J. M.

Goldblatt, N.

N. Goldblatt and M. Hercher, Phys. Rev. Lett. 20, 310 (1968).
[CrossRef]

Hercher, M.

N. Goldblatt and M. Hercher, Phys. Rev. Lett. 20, 310 (1968).
[CrossRef]

Kikuchi, K.

Li, M. J.

Li, S. P.

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
[CrossRef]

Nolan, D. A.

Pilipetskii, N. F.

Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
[CrossRef]

Shkunov, N.

Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Takushima, Y.

Tanemura, T.

Toulouse, J.

Yeniay, A.

Zeldovich, Y.

Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

J. Lightwave Technol. (2)

Opt. Lett. (1)

Phys. Rev. A (1)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

N. Goldblatt and M. Hercher, Phys. Rev. Lett. 20, 310 (1968).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), pp. 394-396.

Y. Zeldovich, N. F. Pilipetskii, and N. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used for measuring Brillouin scattering in a single-mode fiber.

Fig. 2
Fig. 2

Dependence of Brillouin waves, Rayleigh scattering waves, and the transmitted pump light on the pump power.

Fig. 3
Fig. 3

(a) Stokes and anti-Stokes Brillouin shift spectra of 10 km long Corning LEAF fiber when the pump power of 1550 nm laser is 13.7 mW . (b) L01 mode spectra of Stokes and anti-Stokes Brillouin waves when the pump power of the 1550 nm laser is 13.7 mW .

Fig. 4
Fig. 4

(a) Dependence of Stokes and anti-Stokes Brillouin shifts on the power of the pump laser at 1550 nm . (b) Dependence of Stokes and anti-Stokes Brillouin linewidth on the pump power of the 1550 nm laser. (c), (d) Intensity dependence of Stokes and anti-Stokes Brillouin waves including the L01, L02, L03, and L04 modes on the pump power of the 1550 nm laser, respectively.

Fig. 5
Fig. 5

(a) Widening factor of Stokes and anti-Stokes Brillouin waves against the Brillouin gain. (b) Relative intensity of Stokes and anti-Stokes Brillouin waves against the Brillouin gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = 4 ω s ( N + 1 ) n c A Γ [ exp ( G ( Γ 2 ) 2 ω 2 + ( Γ 2 ) 2 ) 1 ] ,
S ( ω ) = 4 h ω s ( N + 1 ) n c A Γ [ 1 exp ( G ( Γ 2 ) 2 ω 2 + ( Γ 2 ) 2 ) ] .

Metrics