Abstract

We report the femtosecond dynamics of fluorescence anisotropy excited through the two-photon absorption (TPA), which provides direct signatures of delocalized electronic excitations for symmetrical macromolecular architectures. Two-photon excited fluorescence anisotropy is strongly correlated with the orientation and value of the transition moment from the excited state to the second and higher lying states. For macromolecular systems it leads to a relatively low initial fluorescence anisotropy and specific femtosecond anisotropy dynamics. We have experimentally demonstrated qualitatively different anisotropy dynamics for two- and one-photon absorption excitations for strongly coupled ring architecture prospective for artificial-light-harvesting applications and possessing an enhanced TPA-absorption cross section.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription