Abstract

A continuous-wave distributed feedback diode laser emitting at 976nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3μm×5μm and an interaction length of 10mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304mW of incident infrared light inside the waveguide. Blue laser light emission of 159mW at 488nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Miyoshi, T. Kozaki, T. Yanamoto, Y. Fujimura, S. I. Nagahama, and T. Mukai, J. Info. Display 15, 157 (2007).
    [CrossRef]
  2. S. N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, Appl. Phys. Lett. 88, 111101 (2006).
    [CrossRef]
  3. K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, Opt. Express 15, 7730 (2007).
    [CrossRef] [PubMed]
  4. K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, Appl. Phys. Lett. 89, 241127 (2006).
    [CrossRef]
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, Opt. Lett. 22, 1834 (1997).
    [CrossRef]
  6. Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, Appl. Phys. B 83, 241 (2006).
    [CrossRef]
  7. E. Herault, F. Balembois, and P. Georges, Opt. Express 13, 5653 (2005).
    [CrossRef] [PubMed]
  8. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, Proc. SPIE 5332, 143 (2004).
    [CrossRef]
  9. Z. Ye, Q. Lou, J. Dong, Y. Wei, and L. Lin, Opt. Lett. 30, 73 (2005).
    [CrossRef] [PubMed]
  10. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, Opt. Express 13, 10589 (2005).
    [CrossRef] [PubMed]
  11. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, Opt. Lett. 31, 802 (2006).
    [CrossRef] [PubMed]
  12. O. B. Jensen, J. Holm, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, Proc. SPIE 6455, 645503 (2007).
    [CrossRef]
  13. H. Fuchs, M. A. Tremont, O. Casel, D. Woll, T. Ulm, J. A. L'huillier and R. Wallenstein, Appl. Phys. B 87, 425 (2007).
    [CrossRef]
  14. A. Jechow, V. Raab, and R. Menzel, Appl. Opt. 46, 943 (2007).
    [CrossRef] [PubMed]
  15. A. Jechow, D. Skoczowsky, and R. Menzel, Opt. Express 15, 6976 (2007).
    [CrossRef] [PubMed]
  16. H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, Phot. Tech. Lett. 18, 737 (2006).
    [CrossRef]

2007 (6)

T. Miyoshi, T. Kozaki, T. Yanamoto, Y. Fujimura, S. I. Nagahama, and T. Mukai, J. Info. Display 15, 157 (2007).
[CrossRef]

K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, Opt. Express 15, 7730 (2007).
[CrossRef] [PubMed]

O. B. Jensen, J. Holm, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, Proc. SPIE 6455, 645503 (2007).
[CrossRef]

H. Fuchs, M. A. Tremont, O. Casel, D. Woll, T. Ulm, J. A. L'huillier and R. Wallenstein, Appl. Phys. B 87, 425 (2007).
[CrossRef]

A. Jechow, V. Raab, and R. Menzel, Appl. Opt. 46, 943 (2007).
[CrossRef] [PubMed]

A. Jechow, D. Skoczowsky, and R. Menzel, Opt. Express 15, 6976 (2007).
[CrossRef] [PubMed]

2006 (5)

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, Phot. Tech. Lett. 18, 737 (2006).
[CrossRef]

M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, Opt. Lett. 31, 802 (2006).
[CrossRef] [PubMed]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

S. N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, Appl. Phys. Lett. 88, 111101 (2006).
[CrossRef]

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, Appl. Phys. B 83, 241 (2006).
[CrossRef]

2005 (3)

2004 (1)

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, Proc. SPIE 5332, 143 (2004).
[CrossRef]

1997 (1)

Appl. Opt. (1)

Appl. Phys. B (2)

H. Fuchs, M. A. Tremont, O. Casel, D. Woll, T. Ulm, J. A. L'huillier and R. Wallenstein, Appl. Phys. B 87, 425 (2007).
[CrossRef]

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, and Z. Xu, Appl. Phys. B 83, 241 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

S. N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, Appl. Phys. Lett. 88, 111101 (2006).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

J. Info. Display (1)

T. Miyoshi, T. Kozaki, T. Yanamoto, Y. Fujimura, S. I. Nagahama, and T. Mukai, J. Info. Display 15, 157 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phot. Tech. Lett. (1)

H. Wenzel, J. Fricke, A. Klehr, A. Knauer, and G. Erbert, Phot. Tech. Lett. 18, 737 (2006).
[CrossRef]

Proc. SPIE (2)

O. B. Jensen, J. Holm, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, Proc. SPIE 6455, 645503 (2007).
[CrossRef]

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, Proc. SPIE 5332, 143 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup consisting of a temperature stabilized DFB laser with a lens system for astigmatic correction, an optical isolator, a half-wave-plate (HWP), two aspherical lenses (L1, L2), a dichroic mirror for separating the second harmonic (SHG) from the fundamental wave (FUN), and a PPLN waveguide crystal.

Fig. 2
Fig. 2

Output power of the DFB as a function of the injection current measured behind the optical isolator. The laser threshold injection current was 33 mA , and the slope efficiency resulted in 0.74 W A .

Fig. 3
Fig. 3

SHG output power as a function of the fundamental power of the DFB laser at a crystal temperature of 125 ° C .

Fig. 4
Fig. 4

Caustic of the SHG light for both axes at an injection current of 630 mA and an optical output power of 159 mW . The resulting beam quality was determined to be M 2 = 1.04 ± 0.01 in the x-axis (black dots) and M 2 = 1.02 ± 0.01 in the y-axis (gray squares).

Fig. 5
Fig. 5

Spectrum of the generated blue laser emission measured with an OSA at an injection current of 630 mA . The band width (FWHM) was determined to be 50 pm .

Metrics