Abstract

A simple, compact, and robust implementation of spectral shearing interferometry using a single nonlinear crystal for both ancilla generation and upconversion is demonstrated. The device is capable of accurate characterization of femtosecond laser pulses over the 740900nm range with a KDP crystal.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
    [CrossRef]
  2. D. T. Reid and I. G. Cormack, Opt. Lett. 27, 658 (2002).
    [CrossRef]
  3. C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
    [CrossRef] [PubMed]
  4. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
    [CrossRef]
  5. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  6. A. S. Radunsky, E. M. Kosik, I. A. Walmsley, P. Wasylczyk, W. Wasilewski, A. B. U'Ren, and M. E. Anderson, Opt. Lett. 31, 1008 (2006).
    [CrossRef] [PubMed]
  7. W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  8. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
    [CrossRef]
  9. C. Dorrer, Opt. Lett. 24, 1532 (1999).
    [CrossRef]
  10. The details of the derivation will be reported in a future publication.
  11. H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
    [CrossRef]
  12. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, S85 (2000).
    [CrossRef]

2006

2004

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

2003

2002

2001

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
[CrossRef]

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

2000

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, S85 (2000).
[CrossRef]

1999

C. Dorrer, Opt. Lett. 24, 1532 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1993

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Anderson, M. E.

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Baum, P.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

Cormack, I. G.

de Araujo, L. E. E.

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, S85 (2000).
[CrossRef]

Dorrer, C.

Grice, W. P.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Gu, X.

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Kang, I.

Kimmel, M.

Kosik, E. M.

Kozma, I. Z.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Lochbrunner, S.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

O'Shea, P.

Radunsky, A. S.

Reid, D. T.

Riedle, E.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

Schmidhammer, U.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Trebino, R.

U'Ren, A. B.

Walmsley, I. A.

A. S. Radunsky, E. M. Kosik, I. A. Walmsley, P. Wasylczyk, W. Wasilewski, A. B. U'Ren, and M. E. Anderson, Opt. Lett. 31, 1008 (2006).
[CrossRef] [PubMed]

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, S85 (2000).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

Wang, H.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

Wasilewski, W.

Wasylczyk, P.

Weiner, A. M.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

Appl. Phys. B

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, S85 (2000).
[CrossRef]

IEEE J. Quantum Electron.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Rev. Sci. Instrum.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, Rev. Sci. Instrum. 75, 2323 (2004).
[CrossRef]

Other

The details of the derivation will be reported in a future publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the ARAIGNEE device. λ 2 , half-wave plate; Q, quartz plate; MP, mutually tilted (by β) and longitudinally shifted (by d) mirror pair; PM, pick-off mirror; KDP, nonlinear crystal; L, lens. Dotted curves, ordinary pulses; solid curves, extraordinary pulses.

Fig. 2
Fig. 2

Measured (solid curves) and calculated (dashed curves) spectral phase and measured spectral intensity for different central wavelengths and bandwidths of the input pulse (a) λ c = 830 nm , Δ ω = 35 mrad fs 1 , 100 mm BK7 glass block; (b) λ c = 760 nm , Δ ω = 35 mrad fs 1 , 28.5 mm BK7; (c) λ c = 830 nm , Δ ω = 80 mrad fs 1 , 9.5 mm BK7.

Fig. 3
Fig. 3

Spectral phase error ϵ ϕ of the retrieved pulse calculated from a numerical simulation of the pulse propagation in the nonlinear crystal plotted as a function of the input pulse bandwidth (intensity FWHM) and central wavelength. Gaussian transform-limited input pulse is used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z A SF ( t , z ) = i Γ A o ( t Δ k SF o z ) A e ( t Δ k SF e z t 0 ) i Δ k z ,
A SF ( t ) exp ( i Ω t ) A ¯ e ( Ω ) A o ( α t + t Δ ) ,

Metrics