Abstract

The relative importance of group-velocity dispersion and loss-induced distortion in limiting the performance of optical delay lines based on coupled resonator structures is investigated. It is shown that for the current state of the quality of fabrication both factors play roughly comparable roles for bit rates of 2.540Gbitss and that as the storage capacity grows, the relative weight of loss-imposed limitation increases.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), Chap. 6, p. 497.
    [CrossRef]
  2. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
    [CrossRef] [PubMed]
  3. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
    [CrossRef]
  4. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, Opt. Express 13, 6092 (2005).
    [CrossRef] [PubMed]
  5. K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Lett. 29, 1782 (2005).
    [CrossRef]
  6. Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  7. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
    [CrossRef]
  8. J. B. Khurgin, J. Opt. Soc. Am. B 22, 1062 (2005).
    [CrossRef]
  9. J. B. Khurgin, Opt. Lett. 31, 948 (2006).
    [CrossRef] [PubMed]
  10. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).
    [CrossRef]
  11. A. B. Matsko, D. V. Strekalov, and L. Maleki, Opt. Express 13, 2210 (2005).
    [CrossRef] [PubMed]
  12. R. S. Tucker, 'Technologies for high-capacity routers,' submitted to J. Lightwave Technol .
  13. J. B. Khurgin, Opt. Lett. 32, 163 (2002).
    [CrossRef]
  14. J. B. Khurgin, Phys. Rev. A 62, 013121 (2000).
    [CrossRef]
  15. J. B. Khurgin, Opt. Lett. 30, 531 (2005).
    [CrossRef]
  16. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
    [CrossRef]
  17. R. Espinola, J. Dadap, R. Osgood Jr., S. McNab, and Y. Vlasov, Opt. Express 13, 4341 (2005).
    [CrossRef] [PubMed]

2006 (3)

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

J. B. Khurgin, Opt. Lett. 31, 948 (2006).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

2005 (8)

2004 (1)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

2003 (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

J. B. Khurgin, Phys. Rev. A 62, 013121 (2000).
[CrossRef]

Baba, T.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), Chap. 6, p. 497.
[CrossRef]

Chang-Hasnain, C. J.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).
[CrossRef]

Dadap, J.

Espinola, R.

Gaeta, A. L.

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), Chap. 6, p. 497.
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Herraez, M. G.

K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Lett. 29, 1782 (2005).
[CrossRef]

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Khurgin, J. B.

Ku, P.-C.

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
[CrossRef] [PubMed]

Maleki, L.

Matsko, A. B.

McNab, S.

McNab, S. J.

Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Mori, D.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

O'Boyl, M.

Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

O'Boyle, M.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Okawachi, Y.

Osgood, R.

Sedgwick, F. G.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Sharping, J. E.

Song, K. Y.

K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Lett. 29, 1782 (2005).
[CrossRef]

Strekalov, D. V.

Thevenaz, L.

K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Lett. 29, 1782 (2005).
[CrossRef]

Tucker, R. S.

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).
[CrossRef]

R. S. Tucker, 'Technologies for high-capacity routers,' submitted to J. Lightwave Technol .

Uskov, A. V.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

R. Espinola, J. Dadap, R. Osgood Jr., S. McNab, and Y. Vlasov, Opt. Express 13, 4341 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Xia, F.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, Appl. Phys. Lett. 89, 041122 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

J. Lightwave Technol (1)

R. S. Tucker, 'Technologies for high-capacity routers,' submitted to J. Lightwave Technol .

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (2)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyl, H. F. Hamann, S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (1)

J. B. Khurgin, Phys. Rev. A 62, 013121 (2000).
[CrossRef]

Other (1)

R. W. Boyd and D. J. Gauthier, in Progress in Optics, Vol. 43, E.Wolf, ed. (Elsevier, 2002), Chap. 6, p. 497.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a), Implementation of CRS delay line with ring resonators. (b), Dispersion and group delay (in arbitrary units) in the CRS of (a).

Fig. 2
Fig. 2

Required number of resonators in the CRS delay line versus bit rate. a, Storage capacity N = 10   bits ; b, Storage capacity N = 200   bits .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

sin ( ω τ ) = κ cos ( Φ N r ) ,
T d ( ω ) = Φ ω = N r τ κ + 1 2 N r ( τ κ ) 3 ( 1 κ 2 ) ( ω ω 0 ) 2 + ,
N r ( τ κ ) B = N ,
Δ T d ( ω 0 ± ω 1 2 2 ) = 8 ln 2 ( 2 ) N r ( τ κ ) 3 ( 1 κ 2 ) B 2 B 1 4 .
P out ( ω ) = P ( ω ) exp [ α c n T d ( ω ) ] exp [ 4 ln 2 ( ω ω 0 ) 2 ( Δ ω sig ) 2 α c 2 n N r ( τ κ ) 3 ( 1 κ 2 ) ( ω ω 0 ) 2 ] .
Δ T out 2 = Δ T sig 2 [ 1 + Δ ω sig 2 4 ln 2 α c 2 n N r ( τ κ ) 3 ( 1 κ 2 ) ] ,
16 ln ( 2 ) α c 2 n N r ( τ κ ) 3 ( 1 κ 2 ) B 2 1 .
32 ln 2 ( 2 ) N r ( τ κ ) 3 ( 1 κ 2 ) B 3 1 + B loss 2 B 2 1 ,
N r ( B , N ) = 4 2 ln 2 N 3 2 1 + B loss 2 B 2 4 1 + B 2 B max 2 ,
N r { 2 ( α c n B ) 1 2 N 3 2 B B loss N r 4 N 3 2 B loss B B max ( N ) N B τ B B max ( N ) } .
κ = 2 ln 2 N α R B τ = α R B B min ,

Metrics