Abstract

Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mirtchev, J. Opt. Soc. Am. B 15, 171 (1998).
    [CrossRef]
  2. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
    [CrossRef]
  3. D. B. S. Soh, J. Nilsson, and A. B. Grudinin, J. Opt. Soc. Am. B 23, 10 (2006).
    [CrossRef]
  4. L. Kuznetsova, A. Chong, and F. W. Wise, Opt. Lett. 31, 2640 (2006).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Phys. Rev. A 44, 7493 (1991).
    [CrossRef] [PubMed]
  6. J. Paye, IEEE J. Quantum Electron. 28, 2262 (1992).
    [CrossRef]
  7. E. Yahel, O. Hess, and A. Hardy, IEEE Photon. Technol. Lett. 18, 2227 (2006).
    [CrossRef]
  8. E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
    [CrossRef]
  9. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).
  10. G. C. Pomraning, The Equations of Radiation Hydrodynamics, 1st ed. (Pergamon, 1973), Chap. V.
  11. E. Yahel and A. Hardy, J. Opt. Soc. Am. B 20, 1189 (2003).
    [CrossRef]
  12. Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
    [CrossRef]
  13. M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
    [CrossRef] [PubMed]
  14. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
    [CrossRef]

2006

2003

2002

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

1999

Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
[CrossRef]

1998

1992

J. Paye, IEEE J. Quantum Electron. 28, 2262 (1992).
[CrossRef]

1991

G. P. Agrawal, Phys. Rev. A 44, 7493 (1991).
[CrossRef] [PubMed]

1990

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Phys. Rev. A 44, 7493 (1991).
[CrossRef] [PubMed]

Chang, Q.

Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
[CrossRef]

Chong, A.

Desurvire, E.

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

Dudley, J. M.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

Grudinin, A. B.

Hardy, A.

E. Yahel, O. Hess, and A. Hardy, IEEE Photon. Technol. Lett. 18, 2227 (2006).
[CrossRef]

E. Yahel and A. Hardy, J. Opt. Soc. Am. B 20, 1189 (2003).
[CrossRef]

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

Hess, O.

E. Yahel, O. Hess, and A. Hardy, IEEE Photon. Technol. Lett. 18, 2227 (2006).
[CrossRef]

Jia, E.

Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
[CrossRef]

Kruglov, V. I.

Kruhlak, R. J.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

Kurokawa, K.

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

Kuznetsova, L.

Mirtchev, T.

Nakazawa, M.

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

Nilsson, J.

Paye, J.

J. Paye, IEEE J. Quantum Electron. 28, 2262 (1992).
[CrossRef]

Peacock, A. C.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

Pomraning, G. C.

G. C. Pomraning, The Equations of Radiation Hydrodynamics, 1st ed. (Pergamon, 1973), Chap. V.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).

Soh, D. B. S.

Sun, W.

Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
[CrossRef]

Wise, F. W.

Yahel, E.

E. Yahel, O. Hess, and A. Hardy, IEEE Photon. Technol. Lett. 18, 2227 (2006).
[CrossRef]

E. Yahel and A. Hardy, J. Opt. Soc. Am. B 20, 1189 (2003).
[CrossRef]

Yamada, E.

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Paye, IEEE J. Quantum Electron. 28, 2262 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Yahel, O. Hess, and A. Hardy, IEEE Photon. Technol. Lett. 18, 2227 (2006).
[CrossRef]

J. Comput. Phys.

Q. Chang, E. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999).
[CrossRef]

J. Lightwave Technol.

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, Opt. Commun. 206, 171 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. P. Agrawal, Phys. Rev. A 44, 7493 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada, Phys. Rev. Lett. 65, 1881 (1990).
[CrossRef] [PubMed]

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).

G. C. Pomraning, The Equations of Radiation Hydrodynamics, 1st ed. (Pergamon, 1973), Chap. V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contour plot of the pulse intensity (in terawatts per unit wavelength; see inset) at the fiber output as a function of the wavelength and time delay for an incident pulse around λ s = 1522 nm . Top, temporal intensity, i.e., P s ( z , t , λ ) d λ (normalized). Right side, spectral itensity, i.e., P s ( z , t , λ ) d t (normalized). The solid and dashed curves correspond to the intensity distribution of the pulse at z = L and z = 0 , respectively. The gain in pulse energy is 12.4 dB .

Fig. 2
Fig. 2

Pulse intensity distribution for different input pump powers P p . The solid and dashed curves correspond to the normalized intensity distribution of the pulse at z = L and z = 0 , respectively. (a) Spectral intensity, (b) temporal intensity.

Fig. 3
Fig. 3

Same as Fig. 1 but for an incident pulse around λ s = 1535 nm . The gain in pulse energy is 16.3 dB .

Fig. 4
Fig. 4

Evolution of the pulse intensity (normalized) along the amplifier length as a function of (a) time delay and (b) wavelength for a pulse centered around λ s = 1535 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n f ( ρ ̱ , z , t , λ ) = n ( ρ ̱ , λ ) + λ 4 π [ N 2 ( ρ ̱ , z , t ) σ ¯ 21 ( λ ) N 1 ( ρ ̱ , z , t ) σ ¯ 12 ( λ ) ] + n 2 U ( ρ ̱ , λ ) 2 P s ( z , t , λ ) d λ ,
P s z + ( [ V g 1 ( V g R ) 1 ] + γ c P s d λ ) P s T + λ c ( n eff T + γ P s T d λ ) P s λ + 1 c ( n eff T + γ P s T d λ ) P s g eff ( z , T , λ ) P s + Γ ( λ ) P 0 ( λ ) σ 21 ( λ ) N 2 ( z , T ) ,

Metrics