Abstract

We report on a passive cavity-enhanced Yb-fiber laser frequency comb generating 230MW of peak power (3kW of average power) at a 136MHz pulse repetition rate. The intracativy peak intensity of 3×1014Wcm2 for the 95fs pulse is sufficient to ionize noble gases, such as Xe, Kr, or Ar. The laser system is based on a mode-locked Yb-fiber similariton oscillator in conjunction with a cladding-pumped chirped-pulse fiber amplifier. After recompression, 75fs duration pulses at a 13.1W average power are obtained. These pulses are then coherently added inside a passive ring cavity by controlling the fiber oscillator’s pulse repetition rate and carrier-envelope offset frequency. This system is well suited for studying high-field phenomena at very high pulse repetition rates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [CrossRef]
  2. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
    [CrossRef] [PubMed]
  3. A. L'Huillier, D. Descamps, A. Johansson, J. Norin, J. Mauritsson, and C.-G. Wahlström, Eur. Phys. J. D 26, 91 (2003).
    [CrossRef]
  4. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature 432, 867 (2004).
    [CrossRef] [PubMed]
  5. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
    [CrossRef] [PubMed]
  6. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. Baggett, T. Monro, D. Richardson, and U. Keller, Opt. Lett. 28, 1951 (2003).
    [CrossRef] [PubMed]
  7. S. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, Opt. Lett. 31, 2728 (2006).
    [CrossRef] [PubMed]
  8. S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, Opt. Lett. 31, 2072 (2006).
    [CrossRef] [PubMed]
  9. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
    [CrossRef]
  10. R. J. Jones, and J. Ye, Opt. Lett. 27, 1848 (2002).
    [CrossRef]
  11. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, Phys. Rev. Lett. 94, 193201 (2005).
    [CrossRef] [PubMed]
  12. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
    [CrossRef] [PubMed]
  13. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 30, 2754 (2005).
    [CrossRef] [PubMed]
  14. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThG1.
    [PubMed]
  15. I. Hartl, M. E. Fermann, P. Pal, and W. H. Knox, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMU2.
    [PubMed]
  16. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, Opt. Lett. 31, 3046 (2006).
    [CrossRef] [PubMed]
  17. M.E.Fermann, A.Galvanauskas, and G.Sucha, eds., Ultrafast Lasers: Technology and Applications (Marcel Dekker, 2002).
    [CrossRef]
  18. F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  19. A. L'Huillier, L. Lompre, G. Mainfray, and C. Manus, J. Phys. B 16, 1363 (1983).
    [CrossRef]

2006

2005

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett. 30, 2754 (2005).
[CrossRef] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

2004

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature 432, 867 (2004).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef] [PubMed]

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2003

A. L'Huillier, D. Descamps, A. Johansson, J. Norin, J. Mauritsson, and C.-G. Wahlström, Eur. Phys. J. D 26, 91 (2003).
[CrossRef]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. Baggett, T. Monro, D. Richardson, and U. Keller, Opt. Lett. 28, 1951 (2003).
[CrossRef] [PubMed]

2002

2000

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

1993

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[CrossRef] [PubMed]

1983

A. L'Huillier, L. Lompre, G. Mainfray, and C. Manus, J. Phys. B 16, 1363 (1983).
[CrossRef]

Eur. Phys. J. D

A. L'Huillier, D. Descamps, A. Johansson, J. Norin, J. Mauritsson, and C.-G. Wahlström, Eur. Phys. J. D 26, 91 (2003).
[CrossRef]

J. Phys. B

A. L'Huillier, L. Lompre, G. Mainfray, and C. Manus, J. Phys. B 16, 1363 (1983).
[CrossRef]

Nature

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature 432, 867 (2004).
[CrossRef] [PubMed]

New J. Phys.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[CrossRef] [PubMed]

Rev. Mod. Phys.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Science

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef] [PubMed]

Other

M.E.Fermann, A.Galvanauskas, and G.Sucha, eds., Ultrafast Lasers: Technology and Applications (Marcel Dekker, 2002).
[CrossRef]

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThG1.
[PubMed]

I. Hartl, M. E. Fermann, P. Pal, and W. H. Knox, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMU2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: LO, local oscillator; SA, saturable absorber; PZT, piezo actuator; FBG, fiber Bragg grating; D, photodetector; PM, polarization maintaining; SM, single mode.

Fig. 2
Fig. 2

(a) Fiber stretcher–grating compressor dispersion compensation. (b) Amplified pulse retrieved from a frequency-resolved optical gating (FROG) measurement at 10 W of average power. Retrieved intensity FWHM, 75 fs ; FROG error, 0.5%. Inset, optical spectrum emitted by the similariton Yb-fiber oscillator.

Fig. 3
Fig. 3

(a) Optical spectrum transmitted through the cavity (dotted, 17.2 nm FWHM) and emitted by the laser system with (solid, 19.3 nm FWHM) and without (dashed, 40 nm FWHM) filtering before the amplifier. (b) Current through plasma for various noble gases at 10 V mm bias as a function of laser power and peak intensity. The gas pressure was 750 mTorr .

Metrics