Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. Here we demonstrate both high-spectral- and spatial-resolution multiplex CARS imaging of polymer films, using a simple scheme for chirped CARS with a spectral bandwidth of 300cm1.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
    [CrossRef]
  2. J. J. Song, G. L. Eesley, and M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
    [CrossRef]
  3. J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
    [CrossRef]
  4. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, Opt. Express 12, 331 (2004).
    [CrossRef] [PubMed]
  5. S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
    [CrossRef]
  6. E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
    [CrossRef] [PubMed]
  7. T. W. Kee, H. X. Zhao, and M. T. Cicerone, Opt. Express 14, 3631 (2006).
    [CrossRef] [PubMed]
  8. M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  9. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  10. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
    [CrossRef] [PubMed]
  11. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Chem. Phys. Lett. 387, 436 (2004).
    [CrossRef]
  12. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 5854 (2006).
    [CrossRef] [PubMed]
  13. J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
    [CrossRef]
  14. Y. Fu, H. F. Wang, R. Y. Shi, and J. X. Cheng, Opt. Express 14, 3942 (2006).
    [CrossRef] [PubMed]
  15. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, Biophys. J. 77, 2226 (1999).
    [CrossRef] [PubMed]

2006

2005

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
[CrossRef]

2004

2002

J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

2001

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

1999

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, Biophys. J. 77, 2226 (1999).
[CrossRef] [PubMed]

1976

J. J. Song, G. L. Eesley, and M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Appl. Phys. Lett.

J. J. Song, G. L. Eesley, and M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Biophys. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, Biophys. J. 77, 2226 (1999).
[CrossRef] [PubMed]

Chem. Phys. Lett.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Chem. Phys. Lett. 387, 436 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 105, 1277 (2001).
[CrossRef]

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 5854 (2006).
[CrossRef] [PubMed]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
[CrossRef]

Phys. Rev. Lett.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multiplex CARS energy level diagram. Narrow-bandwidth pump and probe pulses mix with a broadband Stokes pulse, yielding a high-resolution anti-Stokes signal.

Fig. 2
Fig. 2

(a) C-CARS spectra of PS- and PVME-rich polymer film domains. The peaks at 3050, 2900, and 2850 cm 1 are the aromatic C H stretching mode and the asymmetric and symmetric aliphatic C H stretching modes, respectively. C-CARS images utilizing the aromatic (b) and aliphatic (c) C H stretching modes. The scale bars are 3 μ m .

Fig. 3
Fig. 3

(a) C-CARS image of 480 nm PS beads. The scale bar is 500 nm . (b) C-CARS line scans of the region in (a) outlined in white, showing that the peaks due to two adjacent PS beads, are clearly resolved.

Fig. 4
Fig. 4

(a) Aromatic C H stretching region c-CARS image of PS- and PVME-rich polymer film domains. Pixel size 220 nm . The scale bar in the upper right is 1 μ m . (b) Representative line scan of the C-CARS signal in (a). The error bars represent the noise in the c-CARS signal of a PVME-rich domain of Fig. 2b.

Metrics