Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Flux vector formulation for photon propagation in the biological tissue

Not Accessible

Your library or personal account may give you access

Abstract

We present a generalized delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to the photon flux vector. The solution of the integral equation is highly accurate to model the photon propagation in the biological tissue over a broad range of optical parameters, especially in the visible light spectrum where the diffusion approximation breaks down. The methodology is validated in the Monte Carlo simulation and can be applied in various optical imaging applications.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling

Dmitry Yudovsky and Anthony J. Durkin
Appl. Opt. 50(21) 4237-4245 (2011)

Photon flux gradients in layered turbid media: application to biological tissues

Nina Fukshansky-Kazarinova, Wolfram Lork, Eberhard Schafer, and Leonid Fukshansky
Appl. Opt. 25(5) 780-788 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.