Abstract

We report a tunable, single-mode vertical cavity surface-emitting laser (VCSEL) format suitable for array operation, power scaling, fiber coupling, and operation in isolated environments such as those required by atom optics. The devices are fiber VCSELs, consisting of a semiconductor gain and mirror structure separated from a mirror-coated optical fiber by an air (or vacuum) gap. The gain structure has polymer microlenses fabricated on its surface, of characteristics suitable to focus the oscillating mode on both cavity mirrors, ensuring stable fundamental mode emission and high fiber coupling efficiency. We demonstrate such devices in continuous-wave operation at 1.03μm at room temperature, with a single-mode tuning range of 13nm, laser threshold as low as 2.5mW, and a maximum fiber-coupled output power of 10mW.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
    [CrossRef]
  2. M. C. Larson and J. S. Harris, Appl. Phys. Lett. 68, 891 (1996).
    [CrossRef]
  3. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, IEEE Photon. Technol. Lett. 16, 2212 (2004).
    [CrossRef]
  4. A. Tarraf, F. Riemenschneider, M. Strassner, J. Daleiden, S. Irmer, H. Hallbritter, H. Hillmer, and P. Meissner, IEEE Photon. Technol. Lett. 16, 720 (2004).
    [CrossRef]
  5. Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C. C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, IEEE J. Quantum Electron. 39, 1037 (2003).
    [CrossRef]
  6. K. Hsu, C. M. Miller, D. Babic, D. Houng, and A. Taylor, IEEE Photon. Technol. Lett. 10, 1199 (1998).
    [CrossRef]
  7. N. Laurand, S. Calvez, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, Phys. Status Solidi C 2, 3895 (2005).
    [CrossRef]
  8. A. Bousseksou, M. El Kurdi, M. D. Salik, I. Sagnes, and S. Bouchoule, Electron. Lett. 40, 1490 (2004).
    [CrossRef]
  9. T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hansch, A. Balocchi, R. J. Warburton, and J. Reichel, Appl. Phys. Lett. 89, 111110 (2006).
    [CrossRef]
  10. E. Gu, H. X. Zhang, H. D. Sun, M. D. Dawson, A. R. Mackintosh, A. J. C. Kuehne, R. A. Pethrick, C. Belton, and D. D. C. Bradley, Appl. Phys. Lett. 90, 031116 (2007).
    [CrossRef]
  11. C. W. Jeon, E. Gu, C. Liu, J. M. Girkin, and M. D. Dawson, IEEE Photon. Technol. Lett. 17, 1887 (2005).
    [CrossRef]
  12. D. Daly, Microlens Arrays (Taylor and Francis, 2001).

2007 (1)

E. Gu, H. X. Zhang, H. D. Sun, M. D. Dawson, A. R. Mackintosh, A. J. C. Kuehne, R. A. Pethrick, C. Belton, and D. D. C. Bradley, Appl. Phys. Lett. 90, 031116 (2007).
[CrossRef]

2006 (1)

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hansch, A. Balocchi, R. J. Warburton, and J. Reichel, Appl. Phys. Lett. 89, 111110 (2006).
[CrossRef]

2005 (2)

C. W. Jeon, E. Gu, C. Liu, J. M. Girkin, and M. D. Dawson, IEEE Photon. Technol. Lett. 17, 1887 (2005).
[CrossRef]

N. Laurand, S. Calvez, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, Phys. Status Solidi C 2, 3895 (2005).
[CrossRef]

2004 (3)

A. Bousseksou, M. El Kurdi, M. D. Salik, I. Sagnes, and S. Bouchoule, Electron. Lett. 40, 1490 (2004).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, IEEE Photon. Technol. Lett. 16, 2212 (2004).
[CrossRef]

A. Tarraf, F. Riemenschneider, M. Strassner, J. Daleiden, S. Irmer, H. Hallbritter, H. Hillmer, and P. Meissner, IEEE Photon. Technol. Lett. 16, 720 (2004).
[CrossRef]

2003 (1)

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C. C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, IEEE J. Quantum Electron. 39, 1037 (2003).
[CrossRef]

2000 (1)

C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
[CrossRef]

1998 (1)

K. Hsu, C. M. Miller, D. Babic, D. Houng, and A. Taylor, IEEE Photon. Technol. Lett. 10, 1199 (1998).
[CrossRef]

1996 (1)

M. C. Larson and J. S. Harris, Appl. Phys. Lett. 68, 891 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

M. C. Larson and J. S. Harris, Appl. Phys. Lett. 68, 891 (1996).
[CrossRef]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hansch, A. Balocchi, R. J. Warburton, and J. Reichel, Appl. Phys. Lett. 89, 111110 (2006).
[CrossRef]

E. Gu, H. X. Zhang, H. D. Sun, M. D. Dawson, A. R. Mackintosh, A. J. C. Kuehne, R. A. Pethrick, C. Belton, and D. D. C. Bradley, Appl. Phys. Lett. 90, 031116 (2007).
[CrossRef]

Electron. Lett. (1)

A. Bousseksou, M. El Kurdi, M. D. Salik, I. Sagnes, and S. Bouchoule, Electron. Lett. 40, 1490 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C. C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, IEEE J. Quantum Electron. 39, 1037 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Hsu, C. M. Miller, D. Babic, D. Houng, and A. Taylor, IEEE Photon. Technol. Lett. 10, 1199 (1998).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M. C. Amann, and P. Meissner, IEEE Photon. Technol. Lett. 16, 2212 (2004).
[CrossRef]

A. Tarraf, F. Riemenschneider, M. Strassner, J. Daleiden, S. Irmer, H. Hallbritter, H. Hillmer, and P. Meissner, IEEE Photon. Technol. Lett. 16, 720 (2004).
[CrossRef]

C. W. Jeon, E. Gu, C. Liu, J. M. Girkin, and M. D. Dawson, IEEE Photon. Technol. Lett. 17, 1887 (2005).
[CrossRef]

Phys. Status Solidi C (1)

N. Laurand, S. Calvez, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, Phys. Status Solidi C 2, 3895 (2005).
[CrossRef]

Other (1)

D. Daly, Microlens Arrays (Taylor and Francis, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Fiber-VCSEL schematic, and (b) equivalent cavity.

Fig. 2
Fig. 2

Stylus profilometer measurement of a single polymer microlens and its spherical shape fitting. Inset: optical micrograph of the 44 μ m diameter microlens array.

Fig. 3
Fig. 3

Evolution of the pump ( ω p a ) and cavity ( ω s a ) mode radii as a function of the air gap, L Gap , for a d = 44 μ m microlens. The cavity mode coupling efficiency versus L Gap is also shown.

Fig. 4
Fig. 4

Power transfer functions for L Gap 23 , 30, and 37 μ m . Inset: superposition of successive tuned spectra in the case of mode matching (recorded by optical spectrum analyzer).

Metrics