Abstract

Using internal conical refraction, we demonstrate an Yb:KGW laser where the polarization state can be arbitrarily altered without any additional cavity components. The extinction ratio can also be altered between 1:1 and 40:1. The maximum output power achieved was 8.6W at a slope efficiency of 60.5% with respect to incident pump power. This equals the power performance of a standard Yb:KGW laser used for reference.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, and U. Griebner, Appl. Phys. B 83, 235 (2006).
    [CrossRef]
  2. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, Opt. Express 15, 1003 (2007).
    [CrossRef] [PubMed]
  3. M. Hildebrandt, U. Bunting, U. Kosch, D. Haussman, T. Levy, M. Krause, O. Muller, U. Bartuch, and W. Viol, Opt. Commun. 259, 796 (2006).
    [CrossRef]
  4. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguilo, J. Massons, and F. Díaz, Opt. Express 13, 3465 (2005).
    [CrossRef] [PubMed]
  5. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, Phys. Rev. B 74, 174114 (2006).
    [CrossRef]
  6. M. C. Pujol, R. Solé, J. Massons, J. Gavaldá, X. Solans, C. Zaldo, F. Díaz, and M. Aguiló, J. Appl. Crystallogr. 34, 1 (2001).
    [CrossRef]
  7. J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, M. Ba, D. G. Ran, Z. C. Ling, and H. R. Xia, Appl. Phys. Lett. 87, 061104 (2005).
    [CrossRef]
  8. S. Biswal, S. P. O'Connor, and S. R. Bowman, Appl. Opt. 44, 3093 (2005).
    [CrossRef] [PubMed]
  9. J. E. Hellström, S. Bjurshagen, and V. Pasiskevicius, Appl. Phys. B 83, 55 (2006).
    [CrossRef]
  10. W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).
  11. J. C. Poggendorff's Ann. 48, 461 (1839).
  12. A. J. Schell and N. Bloembergen, J. Opt. Soc. Am. A 68, 1093 (1978).
    [CrossRef]
  13. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. London Ser. A 462, 1629 (2006).
    [CrossRef]
  14. A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
    [CrossRef]
  15. J. P. Fève, B. Boulanger, and G. Marnier, Opt. Commun. 105, 243 (1994).
    [CrossRef]

2007

2006

M. Hildebrandt, U. Bunting, U. Kosch, D. Haussman, T. Levy, M. Krause, O. Muller, U. Bartuch, and W. Viol, Opt. Commun. 259, 796 (2006).
[CrossRef]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, Phys. Rev. B 74, 174114 (2006).
[CrossRef]

J. E. Hellström, S. Bjurshagen, and V. Pasiskevicius, Appl. Phys. B 83, 55 (2006).
[CrossRef]

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, and U. Griebner, Appl. Phys. B 83, 235 (2006).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. London Ser. A 462, 1629 (2006).
[CrossRef]

2005

2001

M. C. Pujol, R. Solé, J. Massons, J. Gavaldá, X. Solans, C. Zaldo, F. Díaz, and M. Aguiló, J. Appl. Crystallogr. 34, 1 (2001).
[CrossRef]

1999

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

1994

J. P. Fève, B. Boulanger, and G. Marnier, Opt. Commun. 105, 243 (1994).
[CrossRef]

1978

A. J. Schell and N. Bloembergen, J. Opt. Soc. Am. A 68, 1093 (1978).
[CrossRef]

1839

J. C. Poggendorff's Ann. 48, 461 (1839).

1837

W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).

Appl. Opt.

Appl. Phys. B

J. E. Hellström, S. Bjurshagen, and V. Pasiskevicius, Appl. Phys. B 83, 55 (2006).
[CrossRef]

J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, and U. Griebner, Appl. Phys. B 83, 235 (2006).
[CrossRef]

Appl. Phys. Lett.

J. Zhang, K. Wang, J. Wang, H. Zhang, W. Yu, X. Wang, Z. Wang, Q. Lu, M. Ba, D. G. Ran, Z. C. Ling, and H. R. Xia, Appl. Phys. Lett. 87, 061104 (2005).
[CrossRef]

J. Appl. Crystallogr.

M. C. Pujol, R. Solé, J. Massons, J. Gavaldá, X. Solans, C. Zaldo, F. Díaz, and M. Aguiló, J. Appl. Crystallogr. 34, 1 (2001).
[CrossRef]

J. Opt. Soc. Am. A

A. J. Schell and N. Bloembergen, J. Opt. Soc. Am. A 68, 1093 (1978).
[CrossRef]

Opt. Commun.

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Opt. Commun. 105, 243 (1994).
[CrossRef]

M. Hildebrandt, U. Bunting, U. Kosch, D. Haussman, T. Levy, M. Krause, O. Muller, U. Bartuch, and W. Viol, Opt. Commun. 259, 796 (2006).
[CrossRef]

Opt. Express

Phys. Rev. B

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, Phys. Rev. B 74, 174114 (2006).
[CrossRef]

Proc. R. Soc. London Ser. A

M. V. Berry, M. R. Jeffrey, and J. G. Lunney, Proc. R. Soc. London Ser. A 462, 1629 (2006).
[CrossRef]

Trans. R. Irish Acad.

W. R. Hamilton, Trans. R. Irish Acad. 17, 1 (1837).

Other

J. C. Poggendorff's Ann. 48, 461 (1839).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the beam propagation of conical refraction. The propagation of two orthogonal polarization states as seen from the side (left) as well as the resulting ring of all polarization states as seen from the front (right).

Fig. 2
Fig. 2

(a) CCD camera pictures of the probe beam transverse profile at the end facet of the crystal for different polarizations of the probe beam when propagating along the CR direction. (b) Pictures for a constant polarization when the crystal is rotated around the vertical axis.

Fig. 3
Fig. 3

Output powers and degrees of polarization at different mirror positions for a typical pair of polarization directions.

Fig. 4
Fig. 4

Output power characteristics for two of the possible polarizations of the CR crystal, as well as the output power of the NG crystal for reference.

Metrics