Abstract

We experimentally demonstrate a communication protocol that enables frequency conversion and routing of quantum information in an adiabatic and thus robust way. The protocol is based on electromagnetically induced transparency (EIT) in systems with multiple excited levels: transfer and/or distribution of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. http://www.iqis.org/.
  2. L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
    [CrossRef] [PubMed]
  3. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
    [CrossRef] [PubMed]
  4. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
    [CrossRef] [PubMed]
  5. J. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992).
    [CrossRef] [PubMed]
  6. G. Giorgi, P. Mataloni, and F. D. Martini, Phys. Rev. Lett. 90, 027902 (2003).
    [CrossRef] [PubMed]
  7. A. P. Vandevender and P. G. Kwiat, J. Mod. Opt. 51, 1433 (2004).
  8. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, Phys. Rev. Lett. 88, 103601 (2002).
    [CrossRef] [PubMed]
  9. B. Wang, S. Li, H. Wu, H. Chang, H. Wang, and M. Xiao, Phys. Rev. A 72, 043801 (2005).
    [CrossRef]
  10. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  11. J. Appel, K.-P. Marzlin, and A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006).
    [CrossRef]
  12. R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A 59, 2910 (1999).
    [CrossRef]
  13. X.-J. Liu, H. Jing, and M.-L. Ge, Eur. Phys. J. D 40, 297 (2006).
    [CrossRef]
  14. S. A. Moiseev and B. S. Ham, Phys. Rev. A 73, 033812 (2006).
    [CrossRef]
  15. E. Cerboneschi and E. Arimondo, Phys. Rev. A 52, R1823 (1995).
    [CrossRef] [PubMed]
  16. E. Cerboneschi and E. Arimondo, Phys. Rev. A 54, 5400 (1996).
    [CrossRef] [PubMed]
  17. M. D. Lukin and A. Imamoglu, Phys. Rev. A 84, 1419 (2000).
  18. E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, Opt. Lett. 31, 2625 (2006).
    [CrossRef] [PubMed]
  19. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  20. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, Phys. Rev. A 75, 035802 (2007).
    [CrossRef]

2007

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, Phys. Rev. A 75, 035802 (2007).
[CrossRef]

2006

E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, Opt. Lett. 31, 2625 (2006).
[CrossRef] [PubMed]

J. Appel, K.-P. Marzlin, and A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006).
[CrossRef]

X.-J. Liu, H. Jing, and M.-L. Ge, Eur. Phys. J. D 40, 297 (2006).
[CrossRef]

S. A. Moiseev and B. S. Ham, Phys. Rev. A 73, 033812 (2006).
[CrossRef]

2005

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

B. Wang, S. Li, H. Wu, H. Chang, H. Wang, and M. Xiao, Phys. Rev. A 72, 043801 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

2004

A. P. Vandevender and P. G. Kwiat, J. Mod. Opt. 51, 1433 (2004).

2003

G. Giorgi, P. Mataloni, and F. D. Martini, Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

2002

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

2001

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

2000

M. D. Lukin and A. Imamoglu, Phys. Rev. A 84, 1419 (2000).

1999

R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A 59, 2910 (1999).
[CrossRef]

1996

E. Cerboneschi and E. Arimondo, Phys. Rev. A 54, 5400 (1996).
[CrossRef] [PubMed]

1995

E. Cerboneschi and E. Arimondo, Phys. Rev. A 52, R1823 (1995).
[CrossRef] [PubMed]

1992

J. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992).
[CrossRef] [PubMed]

Eur. Phys. J. D

X.-J. Liu, H. Jing, and M.-L. Ge, Eur. Phys. J. D 40, 297 (2006).
[CrossRef]

J. Mod. Opt.

A. P. Vandevender and P. G. Kwiat, J. Mod. Opt. 51, 1433 (2004).

Nature

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, Nature 437, 116 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

B. Wang, S. Li, H. Wu, H. Chang, H. Wang, and M. Xiao, Phys. Rev. A 72, 043801 (2005).
[CrossRef]

S. A. Moiseev and B. S. Ham, Phys. Rev. A 73, 033812 (2006).
[CrossRef]

E. Cerboneschi and E. Arimondo, Phys. Rev. A 52, R1823 (1995).
[CrossRef] [PubMed]

E. Cerboneschi and E. Arimondo, Phys. Rev. A 54, 5400 (1996).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoglu, Phys. Rev. A 84, 1419 (2000).

J. Appel, K.-P. Marzlin, and A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A 59, 2910 (1999).
[CrossRef]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, Phys. Rev. A 75, 035802 (2007).
[CrossRef]

Phys. Rev. Lett.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

J. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992).
[CrossRef] [PubMed]

G. Giorgi, P. Mataloni, and F. D. Martini, Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Other

http://www.iqis.org/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transitions used in the experiment, as described in the text. Also shown is the local oscillator field (LO) used for heterodyne detection. (b) Sketch of the experimental setup. In the actual experiment, the beams are overlapping in the cell; the separation in the drawing is for clarity.

Fig. 2
Fig. 2

Temporal profiles of the fields. Ratos pulses are shown for the case in which the retrieve field is turned on before (solid curves) and after (dashed curves) the pump field has been turned off. The pump, retrieve, and signal field powers were, respectively, 8300, 7400, and 0.4 μ W .

Fig. 3
Fig. 3

Peak power of the retrieved Ratos pulse (◻), its temporal width (엯), and energy (+) as a function of the power of the retrieve laser for a pump power of 4 mW . The energy is normalized to the energy of the slowed down pulse. The peak intensity plot is in arbitrary units. The solid lines are linear and inverse linear fits.

Fig. 4
Fig. 4

Beam splitting via RATOS. (a) Example waveforms for different retrieve pulse powers P ret and P pump = 4 mW . The Ratos field ( a ̂ 2 ) is shown with a solid curve, the transmitted signal ( a ̂ 1 ) with a dashed curve. The dotted curve displays the transmitted, slowed down signal pulse in the absence of the retrieve field (regular EIT). (b) Energy ratio of the Ratos pulse and the transmitted signal pulse, as a function of the retrieve field power. (c) Energy of the restored Ratos pulse normalized to the energy of the slowed down pulse [dotted curve in Fig. 4a]; the solid curve is a theoretical fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

b ̂ [ Ω 1 g 1 a ̂ 1 + Ω 2 g 2 a ̂ 2 ]
a ̂ 2 a ̂ 1 = g 1 Ω 2 g 2 Ω 1 .

Metrics