Abstract

Laser oscillation at a wavelength of 1520nm was obtained in an Er:Yb:YAl3(BO3)4 crystal end pumped by a 970nm diode laser. Under the absorbed pump power of 14.6W, quasi-continuous-wave output powers of 1.1W with slope efficiency of 13% and 0.8W with slope efficiency of 11% were achieved in hemispherical and plano–plano cavities, respectively. The laser spectra were recorded for both cavities. The influence of the thermal load in the crystal on the 1520nm laser oscillation was analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, IEEE Photon. Technol. Lett. 13, 19 (2001).
    [CrossRef]
  2. P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, IEEE Photon. Technol. Lett. 14, 1677 (2002).
    [CrossRef]
  3. J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, Appl. Phys. B 81, 49 (2005).
    [CrossRef]
  4. Y. P. Rudnitskii, L. V. Shachkin, S. T. Durmanov, and G. V. Smirnov, Quantum Electron. 35, 1113 (2005).
    [CrossRef]
  5. Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, Appl. Phys. Lett. 89, 241111 (2006).
    [CrossRef]
  6. H. Lara, Laser Focus World 39(1), 137 (2003).
  7. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, Opt. Lett. 29, 1075 (2004).
    [CrossRef] [PubMed]
  8. M. C. Pitts and L. W. Thomason, Proc. SPIE 3867, 206 (1999).
    [CrossRef]
  9. H. Cattaneo, T. Laurila, and R. Hernberg, Appl. Phys. B 85, 337 (2006).
    [CrossRef]
  10. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, Appl. Phys. B 76, 289 (2003).
    [CrossRef]
  11. F. Auge, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
    [CrossRef]
  12. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, Opt. Commun. 271, 142 (2007).
    [CrossRef]
  13. I. Foldvari, E. Beregi, A. Munoz F, R. Sosa, and V. Horvath, Opt. Mater. 19, 241 (2002).
    [CrossRef]

2007

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, Opt. Commun. 271, 142 (2007).
[CrossRef]

2006

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, Appl. Phys. Lett. 89, 241111 (2006).
[CrossRef]

H. Cattaneo, T. Laurila, and R. Hernberg, Appl. Phys. B 85, 337 (2006).
[CrossRef]

2005

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, Appl. Phys. B 81, 49 (2005).
[CrossRef]

Y. P. Rudnitskii, L. V. Shachkin, S. T. Durmanov, and G. V. Smirnov, Quantum Electron. 35, 1113 (2005).
[CrossRef]

2004

2003

L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, Appl. Phys. B 76, 289 (2003).
[CrossRef]

H. Lara, Laser Focus World 39(1), 137 (2003).

2002

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, IEEE Photon. Technol. Lett. 14, 1677 (2002).
[CrossRef]

I. Foldvari, E. Beregi, A. Munoz F, R. Sosa, and V. Horvath, Opt. Mater. 19, 241 (2002).
[CrossRef]

2001

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, IEEE Photon. Technol. Lett. 13, 19 (2001).
[CrossRef]

2000

F. Auge, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

1999

M. C. Pitts and L. W. Thomason, Proc. SPIE 3867, 206 (1999).
[CrossRef]

Appl. Phys. B

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, Appl. Phys. B 81, 49 (2005).
[CrossRef]

H. Cattaneo, T. Laurila, and R. Hernberg, Appl. Phys. B 85, 337 (2006).
[CrossRef]

L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, Appl. Phys. B 76, 289 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, Appl. Phys. Lett. 89, 241111 (2006).
[CrossRef]

IEEE J. Quantum Electron.

F. Auge, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, IEEE Photon. Technol. Lett. 13, 19 (2001).
[CrossRef]

P. Burns, J. M. Dawes, P. Dekker, J. A. Piper, H. Zhang, and J. Wang, IEEE Photon. Technol. Lett. 14, 1677 (2002).
[CrossRef]

Laser Focus World

H. Lara, Laser Focus World 39(1), 137 (2003).

Opt. Commun.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, Opt. Commun. 271, 142 (2007).
[CrossRef]

Opt. Lett.

Opt. Mater.

I. Foldvari, E. Beregi, A. Munoz F, R. Sosa, and V. Horvath, Opt. Mater. 19, 241 (2002).
[CrossRef]

Proc. SPIE

M. C. Pitts and L. W. Thomason, Proc. SPIE 3867, 206 (1999).
[CrossRef]

Quantum Electron.

Y. P. Rudnitskii, L. V. Shachkin, S. T. Durmanov, and G. V. Smirnov, Quantum Electron. 35, 1113 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

1520 nm laser spectra for Er:Yb:YAB crystal at absorbed pump power of 14.6 W in the (a) hemispherical cavity at output coupler transmission of 2.6% and (b) plano–plano cavity.

Fig. 2
Fig. 2

1520 nm laser output power versus absorbed pump power at 970 nm for Er:Yb:YAB crystal in the (a) hemispherical and (b) plano–plano cavities.

Fig. 3
Fig. 3

Energy level diagram of the I 15 2 4 and I 13 2 4 multiplets of Er 3 + in YAB crystal.

Metrics